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1 Introduction — Non-Euclidean Geometry

Over 2000 years ago, the Greek mathematician Euclid compiled all of the known geometry
of the time into a 13-volume text known as the Elements. In itself, that was an impressive
feat, but what made his efforts particularly astonishing was that he laid a logical foundation
for the subject as well. He established five axioms for geometry, then showed that every
result in his text could be proven from those axioms.

In modern language, Euclid’s postulates can be stated as follows:

I. For every point P and every point () not equal to P there exists a unique line ¢ that
passes through P and Q).

I1. For every segment AB and every segment C'D there exists a unique point E such that
B is between A and E and segment CD is congruent to segment BE.

II1. For every point O and every point A not equal to O, there exists a circle with center
O and radius OA.

IV. All right angles are congruent to each other.

V. For every line £ and point P that does not lie on ¢, there exists a unique line m through
P that is parallel to .

From the time the FElements was published, Euclid’s axioms have been the subject of
careful scrutiny, criticism and controversy. Modern texts note several deficiencies in the
axioms (see, for example [3], [1]). Generally speaking, Euclid’s axioms are not precise enough,
and in his text, Euclid relies on diagrams and makes use of unstated assumptions. Many
mathematicians, Hilbert in particular (see [2]), have devoted themselves to placing geometry
on a firmer foundation than did Euclid. Nevertheless, Euclid’s axioms form the basis of
Euclidean geometry, the plane geometry studied by most high school students today.

In spite of some of the weaknesses of Euclid’s axioms, they were, for the most part
accepted by other mathematicians. For example, Axiom I tells us that through any two
points, one and only one line can be drawn. Most people would grant that statement as a
truth about our physical world. So it is with Euclid’s first four axioms. However, the fifth
and final axiom proved extremely controversial.

Although Euclid’s fifth axiom, called the “parallel postulate”, seems a reasonable as-
sumption, geometers were skeptical from its first appearance. Specifically, many thought
that Fuclid V could be proven from his other four axioms. If this were true, there would
be no need to assume it, and Euclid would have needed only four axioms for his Elements.
For 2000 years, geometers attempted to prove the “parallel postulate” and met with utter
failure. In every purported proof, there could be found a flaw, some statement which in turn
could not be proven.



In the 19th century, mathematicians began to look at the postulate in a new way. Rather
than trying to prove Euclid V, they began to question whether such attempts could really
succeed. Three mathematicians (Gauss, Bolyai, and Lobachevsky) independently developed
a noncontradictory geometry in which the parallel postulate is false. One way that Euclid’s
fifth axiom can fail is to have “too many parallel lines through a point”:

There exists a line £ and a point P not on £ such that at least two distinct lines parallel
to ¢ pass through P.

Rather than assuming the parallel postulate, the three men assumed this axiom, which
is today called the Hyperbolic Axiom. Using the hyperbolic axiom and Euclid’s other
four postulates, Gauss, Bolyai, and Lobachevsky developed the important and rich subject
which has come to be known as hyperbolic geometry.

Before discussing models on hyperbolic geometry, we must point out that the hyperbolic
axiom is not the only way in which Euclid V can fail. It is possible, of course, that there are
“not enough parallel lines through a point”:

There exists a line ¢ and a point P not on /¢ such that there are no lines parallel to ¢
which pass through P.

If we assume this axiom, called the Elliptic Axiom, rather than Euclid’s parallel postulate,
we obtain yet another type of geometry, albeit with some restrictions. Elliptic geometry
requires slight modifications to the other axioms of geometry and will not be considered
here. Non-Euclidean geometry consists of both elliptic and hyperbolic geometry, though
in the context of this report it will generally refer to hyperbolic geometry.

2 Models of Hyperbolic Geometry

One particular difficulty with non-Euclidean geometry is visualization. How can one un-
derstand a universe in which the parallel postulate does not hold? In our experience, if we
construct two parallel lines, then draw a third line which intersects one of the two parallel
lines, it seems clear that it must intersect the other. The solution to this difficulty again
requires a change in thinking. We abstract our notions of common geometric terms such as
“line”, “point”, and “congruent”, reinterpret them and create a universe, or model, where
Euclid’s first four axioms hold, but the fifth one doesn’t.

There are many models of hyperbolic geometry. Perhaps the best known are the Poincaré
disk model, the Poincaré half-plane model, and the Beltrami-Klein (or Klein) model. In
each of these models there are different interpretations of undefined geometric terms such
as “point,” “line,” and “congruent.” In the non-Euclidean models, the interpretations are
generally different from their usual Euclidean notions, so standard Euclidean constructions
do not directly apply. For example, in the Poincaré models, “lines” are interpreted to be arcs
of circles, so in these models, lines cannot be constructed with just a Euclidean straightedge.

The non-Euclidean models thus provide a challenge: how does one construct typical
geometric objects in hyperbolic geometry? With a straightedge and compass, one can draw
circles, bisect angles, and construct midpoints in Euclidean geometry. Using the same tools,
how does one perform the same constructions in the hyperbolic models?

Alexander and Finzer have written Geometer’s Sketchpad scripts to perform ten typical
constructions in the Poincaré disk model. The constructions are available at



http://forum.swarthmore.edu/sketchpad/maa96/alexander /index.html
and include scripts to

1. Construct a non-Euclidean line, given two points on the line.

Construct a non-Euclidean line segment, given the endpoints of the segment.
Measure the length of a non-Euclidean line segment.

Calculate the measure of an angle.

Construct the bisector of a given angle.

Construct a perpendicular to a given line through a given point on the line.
Construct a perpendicular to a given line through a given point not on the line.

. Construct the perpendicular bisector of a non-Euclidean line segment.
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Construct a circle, given its center and a point on the circle.

10. Construct a circle, given its center and two points determining the radius of the circle.

These constructions use the Euclidean tools of Geometer’s Sketchpad, which are, in essence,
computer versions of the straightedge and compass. (It should be noted that items #3 and
#4 above are not actually constructions, since they require the notion of measurement.)

In this document, we describe the steps necessary to perform Constructions 1-10 for
the other two well-known models of hyperbolic geometry, the Beltrami-Klein and Poincaré
half-plane models. The descriptions provide a context for understanding the constructions
in associated Geometer’s Sketchpad scripts for these models. In addition, while creating the
constructions for both models, it proved useful to to develop additional scripts which find
the midpoint of a line segment and find the reflection of a point about a line. For example,
constructing the perpendicular bisector of a given line segment becomes much simpler once
we have algorithms for constructing midpoints and raising perpendiculars. These additional
constructions are described as well. Note however, that in all cases, the constructions are
only described - formal proofs are omitted.

The ten Klein scripts are provided first, followed by the half-plane scripts. To the best of
our knowledge, the Klein scripts are original. That is, though others have certainly demon-
strated the same constructions, they are an original compilation in the form of Sketchpad
scripts. The same may be said for constructions 5-10 in the Poincaré half-plane model.
Bennett has created scripts for constructions 14 for the half-plane model. His scripts may
be found at

http://www.keypress.com /sketchpad/misc/sibley/sibley.htm.
Peil has also written several scripts for the half-plane model, which may be found at
http://classweb.moorhead.msus.edu/peil/Projects/geo.html.

Although several of the constructions described here appear to duplicate Peil’s work, there
are some differences. For example, the midpoint and circle constructions described here use
only straightedge and compass constructions, while Peil’s scripts involve coordinate geometry
as well.



3 Beltrami-Klein Model Scripts

In the Beltrami-Klein model of non-Euclidean geometry, we fix a Euclidean circle . “Points”
in this model are interpreted to be points interior to v, and “lines” are interpreted to be
open chords of the circle (i.e. chords without their endpoints). The Klein model is neither
isometric nor conformal; that is, it represents neither distances nor angle measures faithfully.
However, the model does provide several distinct advantages over the Poincaré models. First,
it is immediately apparent that the hyperbolic axiom holds in this model. Given a chord
¢ of v and a point P interior to the circle that is not on the chord, there are an infinitude
of distinct chords passing through P which do not intersect ¢. Second, although the model
is not conformal, constructing perpendicular lines in the Klein disk proves to be somewhat
easier than in the Poincaré models.

Each construction corresponds to an available Geometer’s Sketchpad script. The name
of the associated script is given in bold-face next to the number of the construction. In
Sketchpad, the script tools assume that one is performing the constructions using a fixed
circle labelled “Klein Disk,” defined by a center labelled “K-Disk center,” and a point on the
circle labelled “K-Disk radius.” The Sketchpad file “klnstrt.gsp” contains this startup figure.
The simplest way to use the Klein tools is to create a directory, perhaps called “klein,” in
which all the scripts and “klnstrt.gsp” is stored. Set the script tool directory in Sketchpad
to be “klein,” and the tools will be accessible from the Sketchpad desktop.

For the Klein constructions discussed below, Greenberg [1] provides much useful back-
ground. Stahl’s text [4] discusses the Klein model in depth as well. Note also that in the
constructions, only the most general cases are considered. For example, if one wants to
construct a perpendicular to a general Klein line, Constructions #6 and #7 will work nicely.
However, if the Klein line happens to be a diameter of the Klein disk, the construction
will fail. As noted in the introduction, in addition to the standard ten constructions, we
include constructions which find the midpoint of a Klein segment (see item #8(i) below)
and the reflection of a point about a Klein line (see item #9(i)). The pole of a Klein line
is a useful construction in this model, and a description of that construction is also given
(see item #5(i)). Throughout the constructions, we will use terms such as “K-line” and
“K-circle” as shorthand for “Klein line” and “Klein circle”. This will distinguish between
the non-Euclidean constructions and their Euclidean counterparts.

1. (kline.gss) Construct a Klein line, given two points on the line.

Given: Two points A and B inside the Klein disk.

To Construct: K-line A<—>B, i.e. the Euclidean chord of the Klein disk which passes
through A and B.

—
a) Construct the Euclidean line AB.

—
b) Let P and @ be the points of intersection of AB with 7. (C' and D are ideal
points.)

c) Construct Euclidean segment P(Q. By definition, this segment (excluding end-
points P and Q) is the K-line passing through A and B.

2. (ksegment.gss) Construct a Klein line segment, given the endpoints of the segment.
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Figure 1: Calculating the length of a line segment AB in the Klein model.

Given: Two points A and B inside the Klein disk.
To Construct: K-segment AB.

a) Construct the Euclidean segment AB. By definition, this is also the K-segment
joining A and B.

. (klength.gss) Measure the length of a Klein line segment.
Given: Two points A and B inside the Klein disk.

To Measure: The K-length of segment AB.

>
a) Construct the K-line AB. Let P and @ be the ideal points of this K-line, i.e. the
ends of this chord of v passing through A and B.

b) Find each of the following Euclidean lengths: AP, AQ, BP, BQ.
c) Define the cross-ratio (AB, PQ) by

AP/AQ

(4B, PQ) = AL/AQ
BP/BQ

Let d = 3 - |[¢n(AB, PQ)|. Then d is the K-length of segment AB. (See [,

Theorem 7.4].) d is independent of the labelling of P and @ (i.e. their labelling

could be reversed without affecting d). See Figure 1.

Note: Length is defined as one-half the natural log of the relevant cross-ratio. One
could use a different log base or delete the factor of % The result would still be
a perfectly legitimate hyperbolic measure of length. However, our particular choice
of distance allows for simpler relationships between lengths and angle measures in
hyperbolic trigonometry. Specifically, this choice yields the constant £ = 1 in Theorems
10.1 and 10.2 of [1], and allows for direct use of the hyperbolic law of sines and law of
cosines ([1, Theorem 10.4]).

. (kangmea.gss) Calculate the K-measure of an angle.
Given: Klein points A, B, and C.

To Calculate: the K-measure of /ACB.



a) Construct triangle AACB. Note that constructing the triangle in the Klein disk
is the same as constructing it in the Euclidean sense.

b) Let a be the length of side BC, the side opposite /A. Let b be the length of side
AC, the side opposite /B. Let ¢ be the length of side AB, the side opposite ZC.

Lengths should be measured using the “standard Klein unit.” See Construction
#3 above.

c) According to the hyperbolic law of cosines (See [1, Theorem 10.4])

cosh ¢ = cosh a cosh b — sinh a sinh b cos C.

Thus

<cosh ¢ — cosh a cosh b)
C = arccos

—sinh g sinh b

5. i) (kpole.gss) Construct the pole of a given K-line (see [1, p. 239)]).
Gien: K-line /.

To Construct: P(f), i.e. the intersection of the tangents to the defining K-circle
~ at the endpoints of the Euclidean chord making up 4.

a) Let @ and R be the endpoints of the Euclidean chord which constitutes K-line
14

b) Draw segments OQ and OR, where O is the center of 7.

c) Construct the Euclidean line m through @ which is perpendicular to OQ.
Construct the Euclidean line n through R which is perpendicular to OR. By

construction, m and n are the tangents to v through the points @} and r,
respectively.

d) Assuming /¢ is not a diameter of v, lines m and n intersect at a point P(¢)
exterior to 7.

P(?) is the pole of £. See Figure 2.
ii) (kangbis.gss) Construct the bisector of a given angle.
Given: Klein points A, B, and C.
To Construct: the angle bisector of of /ACB.
(Greenberg outlines this construction in [1, p. 273].)
a) Construct K-rays C’—,Zl and C—é . Let D and E be the respective points where
these rays intersect 7.

b) Let P be the pole of the Euclidean chord DE, i.e. the pole of the K-line
defined by the ideal points D and FE.
—
c) Draw Euclidean line PC. Let Q and R be the points of intersection of this
line with ~.
d) Euclidean chord QR is the K-line which bisects ZACB in the sense of Klein.
See Figure 3.

6. (kprpon.gss) Construct a perpendicular to a given Klein line through a given point
on the line.
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Figure 2: Constructing the pole P(¥) of line £ in the Klein model.

Figure 3: Constructing the angle bisector of an angle in the Klein model.



Given: Klein points A and B.

To Construct: The K-line through B which is perpendicular (in the Klein sense) to
—
the K-line AB.

a) Construct K-line A<_B) and construct the pole P of this line (See Construction #5
(i) above).

—
b) Draw Euclidean line PB. Let () and R be the points where this line meets circle 7.
Then the chord of vy defined by QR is the K-line through B which is perpendicular
—

(in the Klein sense) to AB.

7. (kprpoff.gss) Construct a perpendicular to a given Klein line through a given point
not on the line.

Given: Klein points A, B and C, not collinear.

To Construct: The K-line through C' which is perpendicular (in the Klein sense) to
—
the K-line AB.
—
a) Construct K-line AB and construct the pole P of this line (See Construction #b5
(i) above).

—
b) Draw Euclidean line PC. Let () and R be the points where this line meets circle 7.
Then the chord of vy defined by QR is the K-line through C which is perpendicular
—

(in the Klein sense) to AB.

8. i) (kmidpt.gss) Construct the midpoint of a Klein line segment.
Given: Klein points A and B.

To Construct: The point M on K-segment AB such that AM = BM in the Klein
sense.

(This construction is Exercise K-7 on p. 273 of [1]. It follows from discussion on
p. 262 and 263 of that text.)
—
a) Construct the K-line AB (i.e. the Euclidean chord of v which passes through
A and B).
«—
b) Using Construction #5 (i) above, let P be the pole of Klein line AB.
> —
¢) Draw Euclidean lines PA and PB.
> <«
d) The lines PA and PB each intersect circle v in two points. Let S and S’
—
be the points of intersection of v and PA. Let T and 7" be the points of

intersection of v and ]<3_é Then S, S’, T, and T" are all ideal points.

e) Construct chords ST" and S'T of circle . Let M be the intersection point of
these chords.

By construction, M lies on segment AB and AM = BM. See Figure 4.

ii) (kprpbis.gss) Construct the perpendicular bisector of a Klein line segment.
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Figure 4: Constructing the midpoint of a line segment in the Klein model.

Given: Klein points A and B.

—
To Construct: The K-line £ perpendicular (in the Klein sense) to the K-line AB
and passing through the midpoint M of K-segment AB.

a) Using the construction outlined in Construction #8 (i) above, construct the
midpoint M of segment AB.

b) Using Construction #6 above, construct the line ¢ through M which is per-

—
pendicular to K-line AB. Then / is the required perpendicular bisector of
AB.

i) (kreflpt.gss) Construct the reflection of a point about a Klein line.
Given: Klein points A and M.
To Construct: The point A’ (distinct from A) on K-line AM such that AM = A'M
in the Klein sense. A’ is thus the image of A under reflection about the K-line
through M which is perpendicular (in the Klein sense) to H/l .
(Greenberg outlines this construction on p. 262 of [1].)
a) Construct the K-line passing through A and M. Call this line ¢.
b) Construct the pole @ of ¢ using Construction #5 (i) given above.
¢) Draw Euclidean line Q(—jzl This line intersects 7 at two points, S and S’.

d) Draw Euclidean line ﬁéf . The portion of this line which is a chord of v is a
K-line through M which is perpendicular to ¢. Call this line m.

e) Construct the pole P of m using Construction #5 (i) given above.

f) Draw the Euclidean lines PHS and P<—S>’ . Each of these lines intersects 7 at
another point on «. Call these additional ideal points T" and T”, respectively.

g) Draw Euclidean chord TT". TT' intersects K-line ¢ at a point A’.



Figure 5: Constructing the reflection of a point about a line in the Klein model.

A’ is the desired reflection of A about line m, with AM = A’M in the Klein sense.
See Figure 5.

ii) (kcntrpt.gss) Construct a Klein circle, given its center and a point on the circle.
Given: Klein points O and P.
To Construct: The K-circle centered at O with radius OP.

a) Construct the Euclidean circle ¢; centered at O with Euclidean radius OP.
b) Choose a point @) on circle ¢;.

«—
c¢) Draw line OQ.

d) Construct the reflection of point P about ray O—é) To do this, drop a K-

«—
perpendicular from P to line OQ and let M be the point of intersection.
Reflect point P using Construction #9 (i) above. Let P’ be the image of this
reflection.

e) By construction, OP = OP’ in the sense of Klein.

The Klein circle ¢, centered at O with radius OP is the locus of points P’ as )
travels around the Euclidean circle ¢;. Note that ¢, is not a Euclidean circle. See
Figure 6.

10. (kcntrrd.gss) Construct a Klein circle, given its center and two points, the segment
between which determines the radius of the circle.

Given: Klein points O, A, and B.

To Construct: The K-circle centered at O with radius OP, where OP = AB in the
Klein sense.

a) Draw segment OA. Let K-line ¢ be the perpendicular bisector of segment OA,
using Construction #8 (ii) above.

10



Figure 6: Constructing the Klein circle centered at O and with radius OP

Figure 7: Constructing the Klein circle centered at O and with radius OP congruent to AB.

11



b) Drop a K-perpendicular from point B to line £ at a point M, using Construction
#7 above.

c) Reflect point B about line ¢ using Construction #9 (i) above. Let P be the image
of this reflection. By construction, OP = AB in the sense of Klein.

d) Construct the K-circle ¢; centered at O with radius OP, using Construction #9
(ii) above.

Circle c; is our desired circle. See Figure 7.

4 Poincaré Half-Plane Model Scripts

In the Poincaré Half-plane model of hyperbolic geometry, we fix a (Euclidean) line and
arbitrarily choose one side of that line to be the “upper half-plane.” For intuitive purposes,
we generally use the x-axis as our line and let the set of points whose y-coordinate is positive
be the upper half-plane. “Points” in this model are interpreted to be points in the upper
half-plane (not including the z-axis), and “lines” are interpreted to be either vertical rays
with endpoint on the z-axis, or, more generally half circles whose center lies on the z-axis.
(The constructions below work in the more general case, not for the special case of the lines
which are rays.)

Below are descriptions of basic constructions 1-10 in the Poincaré half-plane model. The
descriptions supplement the associated Geometer’s Sketchpad scripts for the constructions.
Although I give descriptions for all ten constructions, others have produced scripts for these
constructions previously. As noted earlier, Bennett has created scripts for items 1-4 in the
half-plane model. His scripts may be found at

http://www.keypress.com/sketchpad /misc/sibley/sibley.htm.

These scripts are titled hyp_line.gss, hyp_seg.gss, hyp_dist.gss, and hyp_angl.gss, and
construct hyperbolic lines and segments, and measure hyperbolic distances and angles, re-
spectively, in the Poincaré half-plane model. My description of “Construction” #3 is slightly
different from Bennett’s. I choose a slightly different unit for measuring length, for ease of
use of hyperbolic trigonometry. As such, I give a description of my construction/calculation
script (phlength.gss), rather than his. The remaining scripts given here have been written
by this author.
Peil has also written several scripts for the half-plane model, which may be found at

http://classweb.moorhead.msus.edu/peil/Projects/geo.html.

Although several of the constructions described here appear to duplicate Peil’s work, it
should be noted that several constructions differ in their fundamentals (Peil uses coordinate
geometry for some of his constructions).

As in the Beltrami-Klein case, each construction corresponds to an available Geometer’s
Sketchpad script. The name of the associated script is given in bold-face next to the num-
ber of the construction. In Sketchpad, the script tools assume that one is performing the
constructions using a fixed line defined by two points labelled “A” and “B”. Although one
can typically use any line so defined, it is helpful to use the z-axis as the defining line. In
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Figure 8: Constructing the line through A and B in the Poincaré Half-plane model.

>
particular, Sketchpad can become confused as to which side of line AB is the “upper half-

plane,” an ambiguity which is less troublesome when ;4—B> is the z-axis. The Sketchpad file
“poinhalf.gsp” contains a startup figure in which A and B are points on the z-axis. The
simplest way to use the script tools is to create a directory, perhaps called “poinhalf,” in
which all the scripts and “poinhalf.gsp” is stored. Set the script tool directory in Sketchpad
to be “poinhalf,” and the tools will be accessible from the Sketchpad desktop.

As noted in the introduction, in addition to the standard ten constructions, we include
constructions which find the midpoint of a half-plane segment (see item #8(i) below) and the
reflection of a point about a half-plane line (see item #9(i)). In all the constructions we will
use terms such as “PH-line” and “PH-circle” as shorthand for “Poincaré half-plane line” and
“Poincaré half-plane circle”. This will distinguish between the non-Euclidean constructions
and their Euclidean counterparts.

1. (Bennett’s hyp_line.gss) Construct a PH-line, given two points on the line.

Given: Two points A and B in the PH-plane.

—
To Construct: PH-line AB, i.e. the half-circle centered on the z-axis and passing
through A and B.
a) Construct Euclidean segment AB.

b) Let £ be the Euclidean perpendicular bisector of AB. Assuming that A and B do
not lie on the same vertical line, let O be the intersection of £ and the z-axis.

c) Let ¢; be the circle centered at O with radius OA.

The half of circle ¢; which lies in the upper half plane is the PH-line through A and
B. See Figure 8.

2. (Bennett’s hyp seg.gss) Construct a PH-line segment, given the endpoints of the
segment.

13



Figure 9: Calculating the length of a line segment AB in the Poincaré Half-plane model.

Given: Two points A and B in the PH-plane.

>
To Construct: PH-segment AB, i.e. the arc of the circle centered on the z-axis,
contained entirely in the upper half-plane, and with endpoints A and B .

«—
a) Construct the PH-line AB as described in Construction #1 above.

—
b) Let PH-segment AB be the arc of the AB which is contained entirely in the upper
half-plane, and has endpoints A and B.

3. (phlength.gss) Measure the length of a PH-line segment.
Given: Two points A and B in the Poincaré half-plane.

To Measure: The PH-length of segment AB.

—
a) Construct the PH-line AB. Let P and @ be the ideal points of this PH-line, i.e.
the points of intersection of the z-axis and the circle centered on the z-axis which
passes through A and B.

b) Find each of the following Euclidean lengths: AP, AQ, BP, BQ.
c) Define the cross-ratio (AB, PQ) by

_ AP/AQ

(AB,PQ) = = Vil

Let d = [fn(AB, PQ)|. Then d is the PH-length of segment AB. d is independent
of the labelling of P and @) (i.e. their labelling could be reversed without affecting
d). See Figure 9.

Note: As in the length definition for the Klein model, other definitions (using a
different log base or scaling factor) are possible, but this one allows for easy use of
hyperbolic trig formulas.

4. (Bennett’s hyp_angl.gss) Calculate the measure of an angle.

14
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Figure 10: Calculating the measure of angle / AC'B in the Poincaré Half-plane model.

Given: Points A, B, and C in the Poincaré half-plane.
To Calculate: the PH-measure of /ACB.

a) Construct PH-segments AC and BC.

b) Construct the Euclidean tangent lines to the arcs in step (a) at C: Let O and P
be, respectively, the centers on the z-axis of the circles which define the Euclidean
arcs given by PH-segments AC' and BC. Draw Euclidean radius segments OC
and PC. Let m and n be the Euclidean lines through C' which are perpendicular
to OC, and PC, respectively. Then m and n are the desired tangent lines.

c) Euclidean lines m and n define the angle we wish to measure. We need to ensure

the interior of that angle is well-defined. Drop Euclidean perpendicular 1<4—>S to
—
line m at S and Euclidean perpendicular BT to line n at T'.

d) Find the Euclidean measure of Euclidean angle /SCT.
See Figure 10.
5. (phangbis.gss) Construct the bisector of a given angle.
Given: Points A, B, and C in the Poincaré half-plane.
To Construct: the PH-line which bisects PH-angle /ACB.

a) Using steps (a)-(c) in Construction #4 above, construct Euclidean angle /SCT.
b) Let r be the Euclidean angle bisector of Z/SCT'.

c) Let £ be the Euclidean line through C' which is perpendicular to 7.

d) Assuming that r is not a vertical ray, ¢ will intersect the z-axis at some point U.

e) Let ¢; be the Euclidean circle centered at U with radius UC.

The upper half of circle ¢; is the PH-line which bisects /AC'B. See Figure 11.
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Figure 11: Constructing the angle bisector of an angle in the Poincaré Half-plane model.

6. (phprpon.gss) Construct a perpendicular to a given PH-line through a given point
on the line.

Given: Points A and B in the Poincaré half-plane.

To Construct: the PH-line (i.e. Euclidean half-circle) through A which is perpendicular
(in the PH-sense) to the PH-line joining A and B.

—
a) Construct the PH-line AB as described in Construction #1 above. As a Euclidean
half-circle, let this PH-line have center O (on the z-axis).

b) Construct Euclidean segment OA.

c) Construct the Euclidean line £ through A which is perpendicular to segment OA .
—
Line / is thus the tangent to the PH-line AB at point A.

d) Assuming OA is not a vertical line segment, £ intersects the z-axis at some point
P.

e) Construct the Euclidean half-circle m centered at P and passing through point
A.

PH-line m is the desired line. Note that by construction, Euclidean line P(_1)4 is perpen-
dicular to segment OA. On the other hand, Euclidean lines ](D_A? and OA are tangent
to the PH-lines jﬁ and m, respectively. By the definition of perpendicularity in the
half-plane model, then, m J_1<4—)B. See Figure 12.

7. (phprpoff.gss) Construct a perpendicular to a given PH-line through a given point
not on the line.

> >
Given: Points A and B defining PH-line AB and point C' not on AB.

To Construct: PH-line (i.e. Euclidean half-circle) ¢ through C which is perpendicular
(in the PH-sense) to the PH-line joining A and B.
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Figure 12: Constructing the PH-line through B which is perpendicular to 14—é in the Poincaré
Half-plane model.

>
a) Construct the PH-line AB as described in Construction #1 above. As a Euclidean
half-circle, let this PH-line have center O. Extend the half-circle to a full-circle
Cy.
<
b) Construct Euclidean line OC. Let D be the point above the z-axis where the
< —
PH-line AB meets Euclidean line OC.
c) Construct the Euclidean circle ¢, centered at O and passing through point C'.
d) Construct the Euclidean line through O which is perpendicular to Euclidean line

—
OC'. Let this line intersect circle ¢, at point E and circle co at point F', where E
and F' lie above the z-axis.

—
e) Construct Euclidean line DF.

—
f) Construct the line through E which is parallel to DF. Let this line intersect
S
Euclidean line OC' at point G.

>
g) Construct the PH-line CG as described in Construction #1 above.

> > >
PH-line C'G is the desired line. The Euclidean half-circles CG and AB intersect or-
thogonally, so the lines are perpendicular in the Poincaré half-plane sense. See Figure
13.

8. i) (phmidpt.gss) Construct the midpoint of a PH-line segment.

Given: Points C and D.

To Construct: the point M lying on PH-segment C'D which is the midpoint (in
the PH-sense) of C'D.

a) Construct PH-segment (i.e. Euclidean circle arc) CD. Extend this arc to a
Euclidean circle cq, centered at the point F'.

«— «—
b) Construct Euclidean line CD. Assuming C'D is not parallel to the z-axis, let
>
G be the point of intersection of C'D and the z-axis.

c) Let H be the Euclidean midpoint of Euclidean segment F'G which is part of
the z-axis.
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Figure 13:

—
Constructing the PH-line through C which is perpendicular to AB in the Poincaré

Half-plane model.

a)
b)

d) Let ¢y be the Euclidean circle centered at H and passing through G.

e) Circles ¢; and co intersect in two points on opposite sides of the z-axis. The

intersection point M which is above the z-axis is the midpoint of PH-segment
CD.

This completes the essence of the construction; however, Geome ter’s Sketchpad
has some difficulty in deciding which intersection point in step (e) “is above the -

axis.” The remaining construction steps select the correct point without resorting

to coordinate geometry:

f) Call the intersection points from step (e) points I and J . Construct Euclidean
line segment 1.J.

> «—
g) IJ is perpendicular to the z-axis at some point K . In addition, I.J intersects
Euclidean segment C'D at some point L.

ﬁ
h) Construct Euclidean ray KL. By construction, this ray emanates from a
point on the z-axis and “points in the positive y-direction .”

N
i) Let M be the intersection of ray KL with circle c,.

By construction, M will be either point I or point .J, whichever has positive
y-coordinate. See Figure 14.

(phprpbis.gss) Construct the perpendicular bisector of a PH-line segment.
Given: Points C and D.

To Construct: the perpendicular bisector (in the PH-sense) of the PH-segment
CD.

Construct the midpoint M of PH-segment C'D as in Construction #8 (i) above.

Construct the PH-line ¢ through M which is perpendicular to PH-segment C'D
(see Construction # 6 above).

18



c I'M

A

Figure 14: Constructing the midpoint of PH-line segment AB in the Poincaré Half-plane

model.

9.

i) (phreflpt.gss) Construct the reflection of a point about a PH-line.

Given: Points A and M in the Poincaré half-plane.

«—
To Construct: The point A’ on PH-line AM such that AM = A'M in the Poincaré
sense. A’ is thus the image of A under reflection about the PH-line through M
—

which is perpendicular to AM.

a) Construct the PH-line A<_]\)4 . Let ¢; be the Euclidean half-circle which is this
PH-line.

b) Using Construction #6 above, construct the PH-line m through M which is
perpendicular to PH-line AT\Z . As a Euclidean half-circle, let this PH-line
have center O.

> «—

¢) Draw Euclidean line OA. OA intersects the half-circle ¢; at two points, A
and another point A’.

A’ is the desired reflection of A about line m with AM = A’M. See Figure 15.

This completes the essence of the construction; however, Geometer’s Sketchpad

has some difficulty in deciding which point of intersection of line <O—1)4 with circle

¢ is A and which is the desired reflection A’. To resolve this difficulty, I include
the following additional constructions:

d) After constructing line O(—1>4, let C' and D be the points of intersection of this
line with circle ¢;. (One of C and D is point A, and one is A'.)

e) Construct Euclidean segment C'D and find its Euclidean midpoint E.

H
f) Draw ray AE. This ray will intersect circle ¢; at either C' or D. This point
of intersection is our desired reflection A’.

ii) (phcntrpt.gss) Construct a PH-circle, given its center and a point on the circle.

Given: Points O and P in the Poincaré half-plane.
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Figure 15: Constructing the reflection A’ of a point A about a line in the Poincaré Half-plane
model.

To Construct: the PH-circle centered at O with PH-radius OP.

Note: A PH-circle is also a Euclidean circle, albeit with a different “center .” The
Euclidean center of our desired circle will lie on the same vertical line as O .
a) Construct the Euclidean line £ through O which is perpendicular to the z-axis .
b) Using Construction # 9(i) above, let P’ be the image of P under PH-reflection
about the line perpendicular to PH-line O(—l5 Thus OP = OP' in the PH-
sense and P’ is a second point on the desired circle.
c) Draw Euclidean segment PP’ and construct its Euclidean perpendicular bi-
sector m.
d) Assuming m is not a vertical line, let O’ be the intersection of lines m and /.
e) Let ¢; be the Euclidean circle centered at O’ and passing through P (and P’
as well).

Circle c; is our desired circle. See Figure 16.

10. (phcntrrd.gss) Construct a PH-circle, given its center and two points, the distance
between which determines the radius of the circle.

Given: Points O, A, and B in the Poincaré half-plane.

To Construct: The PH-circle centered at O with radius OP, where OP = AB in the
PH-sense.

a) Draw PH-segment OA. Let PH-line ¢ be the perpendicular bisector of segment
OA, using Construction #8 (ii) above.

b) Drop a PH-perpendicular from point B to line £ at a point M, using Construction
#7 above. Call this line m.

c) Reflect point B about line £ using Construction #9 (i) above. Let P be the image
of this reflection, noting that P lies on PH-line m.

d) Construct the PH-circle ¢; centered at O with radius OP, using Construction #9
(ii) above.

Circle c¢; has center O and radius OP. By construction, OP = AB. See Figure 17.
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Figure 16: Constructing PH-circle centered at O with PH-radius OP in the Poincaré Half-
plane model.

Figure 17: Constructing PH-circle centered at O with PH-radius OP congruent to AB in
the Poincaré Half-plane model.
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