§3.8

#5. A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in. and then released, and if there is no damping, determine the position \(u \) of the mass at any time \(t \). Plot \(u \) versus \(t \). Find the frequency, period, and amplitude of the motion.

Solution. Notice that the weight \(mg = 2 \) lb, \(L = 6 \) in. = \(1/2 \) ft. \(\gamma = 0 \). Thus \(m = \frac{mg}{g} = \frac{2}{16} \frac{lb}{ft/sec} \), \(k = \frac{mg}{L} = 4 \frac{lb}{ft} \).

The IVP describing the scenario is,

\[
\frac{1}{16} u'' + 4u = 0, \quad u(0) = \frac{1}{4}, \quad u'(0) = 0.
\]

The characteristic equation of the corresponding homogeneous equation \(\frac{1}{16}r^2 + 2 = 0 \) has roots

\(8i, -8i \)

The general solution of the DE is

\[u(t) = c_1 \cos(8t) + c_2 \sin(8t). \]

\(u(0) = \frac{1}{4} \) implies that \(c_1 = \frac{1}{4} \). \(u'(0) = 0 \) implies that \(8c_2 = 0 \), or \(c_2 = 0 \). Thus,

\[u(t) = \frac{1}{4} \cos(8t). \]

The period \(T = \frac{2\pi}{8} = \frac{\pi}{4} \), frequency \(\omega = 8 \) rad/sec., and the amplitude is 1/4.

#10 A mass weighing 16 lb stretches a spring 3 in. The mass is attached to a viscous damper with a damping constant of 2 lb-sec/ft. If the mass is set in motion from its equilibrium position with a downward velocity of 3 in./sec, find its position \(u \) at any time \(t \). Plot \(u \) versus \(t \). Determine when the mass first returns to its equilibrium position. Also find the time \(\tau \) such that \(|u(t)| < 0.01 \) in. for all \(t > \tau \).

Solution. Notice that the weight \(mg = 16 \) lb, \(L = 3 \) in. = \(1/4 \) ft. \(\gamma = 2 \) lb-sec/ft. Thus \(m = \frac{mg}{g} = \frac{16}{2} \frac{lb}{ft/sec} \), \(k = \frac{mg}{L} = 64 \frac{lb}{ft} \). The IVP describing the scenario is,

\[
\frac{1}{2} u'' + 2u' + 64u = 0, \quad u(0) = 0, \quad u'(0) = 1/4.
\]

The characteristic equation of the corresponding homogeneous equation \(\frac{1}{2}r^2 + 2r + 64 = 0 \) has roots

\(-2 + 2\sqrt{31}i, -2 - 2\sqrt{31}i \)

The general solution of the DE is

\[u(t) = e^{2t} \left[c_1 \cos(2\sqrt{31}t) + c_2 \sin(2\sqrt{31}t) \right]. \]

\(u(0) = 0 \) implies that \(c_1 = 0 \). \(u'(0) = \frac{1}{4} \) implies that \(2\sqrt{31}c_2 = \frac{1}{4} \), or \(c_2 = \frac{1}{8\sqrt{31}} \). Thus,

\[u(t) = \frac{1}{8\sqrt{31}} e^{-2t} \sin(2\sqrt{31}t). \]
$u(t)$ first returns to its equilibrium is when $2\sqrt{31}t = \pi$, or $t = \frac{\pi}{2\sqrt{31}}$ sec.

$$|u(t)| < 0.01 \text{ in.} = \frac{0.01}{12} \text{ ft}.$$

Using calculator, we have $\tau = 1.5927088249$. That is, when $t > 1.5927088249$, $|u(t)| < \frac{0.01}{12} \text{ ft}$.
