§3.8

\#5.A mass weighing 2 lb stretches a spring 6 in . If the mass is pulled down an additional 3 in . and then released, and if there is no damping, determine the position u of the mass at any time t. Plot u versus t. Find the frequency, period, and amplitude of the motion.

Solution. Notice that the weight $m g=2 \mathrm{lb}, L=6 \mathrm{in} .=1 / 2 \mathrm{ft} . \gamma=0$. Thus $m=\frac{m g}{g}=\frac{1}{16} \frac{l b}{\mathrm{ft} / \mathrm{sec}^{2}}, k=\frac{m g}{L}=4 \frac{l b}{f t}$. The IVP describing the scenario is,

$$
\frac{1}{16} u^{\prime \prime}+4 u=0, \quad u(0)=\frac{1}{4}, \quad u^{\prime}(0)=0
$$

The characteristic equation of the corresponding homogeneous equation $\frac{1}{16} r^{2}+2=0$ has roots

$$
8 i,-8 i
$$

The general solution of the DE is

$$
u(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t) .
$$

$u(0)=\frac{1}{4}$ implies that $c_{1}=\frac{1}{4} \cdot u^{\prime}(0)=0$ implies that $8 c_{2}=0$, or $c_{2}=0$. Thus,

$$
u(t)=\frac{1}{4} \cos (8 t) .
$$

The period $T=\frac{2 \pi}{8}=\frac{\pi}{4}$, frequency $\omega=8 \mathrm{rad} / \mathrm{sec}$., and the amplitude is $1 / 4$.
\#10 A mass weighing 16 lb stretches a spring 3 in . The mass is attached to a viscous damper with a damping constant of $2 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$. If the mass is set in motion from its equilibrium position with a downward velocity of $3 \mathrm{in} . /$ sec, find its position u at any time t. Plot u versus t. Determine when the mass first returns to its equilibrium position. Also find the time τ such that $|u(t)|<0.01 \mathrm{in}$. for all $t>\tau$.

Solution. Notice that the weight $m g=16 \mathrm{lb}, L=3 \mathrm{in} .=1 / 4 \mathrm{ft} . \gamma=2 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$. Thus $m=\frac{m g}{g}=\frac{1}{2} \frac{l b}{f t / s e c^{2}}$, $k=\frac{m g}{L}=64 \frac{l b}{f t}$. The IVP describing the scenario is,

$$
\frac{1}{2} u^{\prime \prime}+2 u^{\prime}+64 u=0, \quad u(0)=0, \quad u^{\prime}(0)=1 / 4
$$

The characteristic equation of the corresponding homogeneous equation $\frac{1}{2} r^{2}+2 r+64=0$ has roots

$$
-2+2 \sqrt{31} i,-2-2 \sqrt{31} i
$$

The general solution of the DE is

$$
u(t)=e^{2 t}\left[c_{1} \cos (2 \sqrt{31} t)+c_{2} \sin (2 \sqrt{31} t)\right]
$$

$u(0)=0$ implies that $c_{1}=0 . u^{\prime}(0)=\frac{1}{4}$ implies that $2 \sqrt{31} c_{2}=\frac{1}{4}$, or $c_{2}=\frac{1}{8 \sqrt{31}}$. Thus,

$$
u(t)=\frac{1}{8 \sqrt{31}} e^{-2 t} \sin (2 \sqrt{31} t)
$$

$u(t)$ first returns to its equilibrium is when $2 \sqrt{31} t=\pi$, or $t=\frac{\pi}{2 \sqrt{31}} \mathrm{sec}$.

$$
|u(t)|<0.01 \text { in. }=\frac{0.01}{12} \mathrm{ft} .
$$

Using calculator, we have $\tau=1.5927088249$. That is, when $t>1.5927088249,|u(t)|<\frac{0.01}{12} \mathrm{ft}$.

