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After defying all attempts at a solution for 
350 years, Fermat’s Last Theorem finally 
took its place among the known theorems of 
mathematics in June of this year. 

 
On June 23, during the third of a series of 
lectures at a conference held at the Newton 
Institute in Cambridge, British 
mathematician Dr. Andrew Wiles, of 
Princeton University, sketched a proof of the 
Shimura-Taniyama-Weil conjecture for 
semi-stable elliptic curves.  As Kenneth 
Ribet, of the University of California at 
Berkeley, showed some years ago, Fermat’s 
Last Theorem is a corollary of this result. 

 
In the years since Fermat made his famous 
marginal note in his copy of Diophantus’ 
Arithmetica, asserting, without proof, that 
equations of the form 

nnn zyx =+  

have no integer solutions for values of the 
exponent n greater than 2, many 
mathematicians, professionals and amateurs 
alike, have tried to find a proof.  Every few 
years, the newspapers report yet another 
purported solution, which is subsequently 
found to be lacking in some way. 

 
To understand why Wiles has succeeded 
where so many before him have failed, one 
needs to know something of the recent 
history of the problem. 

 
To number theorists, until the last decade the 
question seemed completely unassailable, 
despite a number of significant advances 
that had been made as a result of attempts to 
solve it, among them the 19th century work 
of Kummer on cyclotomic fields and ideal 
theory. 

 
More recently, there was Gerd Faltings’ 
1983 proof of the Mordell Conjecture, 
which implied that for each exponent, the 
Fermat equation could have at most a finite 
number of solutions.  But, despite much 
simpler proofs of Vojta and Bombieri, it 
seems unlikely that such methods can be 
modified to show that there really are no 
solutions. 

 

Wiles’ approach comes from a somewhat 
different direction, and rests on an amazing 
connection, established during the last 
decade, between the Last Theorem and the 
theory of elliptic curves, that is, curves 
determined by equations of the form 

,32 baxxy ++=  

where a and b are integers. 
 

The path that led to the June 23 
announcement began in 1955 when the 
Japanese mathematician Yutaka Taniyama 
proposed that there should be a connection 
between elliptic curves and another well-
understood class of curves, known as 
modular curves.  One should be able to 
establish a connection between any given 
elliptic curve and a modular curve, and this 
connection would “control” many of the 
properties of the initial curve. 
 
Taniyama’s conjecture was made more 
precise in 1968 by Andre Weil, who 
showed how to determine the exact 
modular curve that should be connected to a 
given elliptic curve. 
 
In 1971 the first significant evidence in fa-
vor of this abstract understanding of 
equations was given by Goro Shimura, a 
Japanese mathematician at Princeton 
University, who showed that it works for a 
very special class of equations.  As a result, 
Taniyama’s proposal eventually became 
known as the Shimura-Taniyama-Weil 
conjecture. 
 
Additional evidence in support of the 
conjecture came from the fact that its nature 
allowed for a substantial amount of 
numerical testing by computer:  all curves 
that were examined seemed to be modular. 
 
But so far, no one knew of any connection 
between this very abstract conjecture and 
Fermat’s Last Theorem.  Things changed 
dramatically in 1986 when Gerhard Frey, 
from Saarbrucken, discovered a most 
surprising and innovative link between the 
two.  What he realized was that if 

nnn bac += , then it seemed unlikely 

that one could understand the elliptic 
curve given by the equation 

))((2 nn bxaxxy +−=  

in the way proposed by Taniyama. 
Following an appropriate re-formulation 
by Jean-Pierre Serre in Paris, Kenneth 
Ribet in Berkeley strengthened Frey’s 
original concept to the point where it was 
possible to prove that the existence of a 
counter example to the Last Theorem 
would lead to the existence of an elliptic 
curve which could not be modular, and 
hence would contradict the Shimura-
Taniyama-Weil conjecture. 
 
This is the point where Wiles entered the 
picture.  Using and developing powerful 
new methods of Barry Mazur(Harvard), 
Matthias Flach (Heidelberg), Victor 
Kolyvagin (Steklov Institute), and others, 
Wiles eventually succeeded in 
establishing the Shimura-Taniyama-Weil 
conjecture for an important class of 
elliptic curves (those with square-free 
“conductors”), which includes those 
relevant to proving Fermat’s Last 
Theorem. 
 
For the Cambridge conference, Wiles had 
announced his lectures, a series of three 
given on successive days, with the highly 
unspecific title “Modular Froms, Elliptic 
Curves, and Galois Representations.”  
Prior to his lectures, he refused to give a 
hint as to what they might contain.  Even 
though, by the third talk, many in the 
audience had guessed he might have 
cracked Fermat’s Last Theorem, few 
dreamt that he could have proved so much 
more, and there was an audible gasp as he 
wrote the final result on the black board. 
 
Given the history of attempts to prove the 
Last Theorem, readers will doubtless view 
this latest announcement with some initial 
skepticism.  But it should be stressed that 
Wiles’s work is not a chain of reasoning 
as strong as its weakest link.  Instead it is 
a bedrock of ideas, solid and rigid, a rich 
and profound theory that will hold up 
even if a few detail need altering.  
Considering the enormous complexity of 
this work it will, of course, take time to be 
absolutely certain that there are no hidden 
flaws, but the experts feel confident that 
even any necessary changes will be 
possible.  Many of these experts were 
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attending Wiles’ talks, and from what he 
said and the way he said it, they were 
satisfied that the techniques are, in essence, 
sound.  The situation is a bit like building a 
bridge across a chasm.  Most attempts to 
solve the Last Theorem made by amateurs 
are like a single span consisting of many 
short pieces of wire tied together.  One small 
flaw and the entire structure collapses.  
Wiles’ solution is much more like a solid 
concrete and steel bridge, erected on firm 
foundations laid down by many others.  It 
may contain many small cracks, but the 
bridge itself still stands, and the road crew 
can come along later to fill in the cracks.  Of 
course, even solidly built bridges do fall 
down occasionally, but the nature of Wiles’ 
work, which involves many appreciable, 
profound new ideas, suggests that this is not 
such a bridge. 
 
Taking the bridge metaphor a step further, 
one might ask what is to be found on the 
other side?  Well, it is likely that the proof 
of the whole of the Shimura-Taniyama-Weil 
conjecture is at hand, and the consequences 
are breathtaking.  The face of number theory 
will be altered in a way that we cannot even 
guess right now. 
 
The story of Fermat’s Last Theorem is one 
of the most delightful in mathematics, and if 
it had to finally be resolved then perhaps it 
was best to be as the motivation for such a 
startling result. 
 
Certainly, the method used to obtain the 
solution is of far more importance to 
mathematics than the Last Theorem itself.  
Indeed, had it not entered the mathematical 
world the way it had, as a cryptic note by 
one of the most powerful number theorists 
the world has ever seen, and had it not 
resisted all attempts at solution for so many 
years, the Last Theorem would have merited 
little more than a footnote to textbook 
accounts of Pythagoras’ Theorem.  But the 
Wiles result, and the work of the many other 
mathematicians that paved the way, is sure 
to have enormous impact in many parts of 
mathematics.  
 
The next issue of FOCUS will include a 
much more detailed account of Wiles’ new 
proof. 

 
 

 The Technical Details 
Shortly after Wiles finished his lecture, Dr. Kenneth Ribet, of the University of 
California at Berkeley, wh was in the audience, sent out the following summary to his 
colleagues at Berkeley, where the excitement it created led to its rapid appearance on 
the Internet.  The message is reproduced here with his permission. 
 
I imagine that many of you have heard rumors about Wiles’s announcement a few hours 
ago that he can prove Taniyama’s conjecture for semistable elliptic curves over Q.  This  
case of the Taniyama conjecture implies Fermat’s Last Theorem, in view of the result 
that I proved a few years ago.  (I proved that the “Frey elliptic curve” constructed from 
a possible solution to Fermat’s equation cannot be modular, i.e., satisfy Taniyama’s 
Conjecture.  On the other hand, it is easy to see that it is semistable. 
 
The method of Wiles borrows results and techniques from lots and lots of people.  I 
mention a few:  Mazur, Hida, Flach, Kolyvagin, yours truly, Wiles himself (older 
papers by Wiles), Rubin… The way he does it is roughly as follows.  Start with a mod p 
representation of the Galois group of Q which is known to be modular.  You want to 
prove that its lifts with a certain property are modular.  This means that the canonical 
map from Mazur’s universal deformation ring to its “maximal Hecke algebra” quotient 
is an isomorphism.  To prove a map like this is an isomorphism, you can give some 
sufficient conditions based on commutative algebra.  Most notably, you have to bound 
the order of a comology group which looks like a Selmer group for Sym2 of the 
representation attached to the modular form.  The techniques for doing this come from 
Flach; and then the proof went on to use Euler systems a la Kolyvagin, except in some 
new geometric guise.  
 
If you take an elliptic curve over Q , you can look at the representation of Gal on the 3-
division points of the curve. If you're lucky, this will be known to be modular, because 
of results of Jerry Tunnell (on base change). Thus, if you're lucky, the problem I 
described above can be solved (there are most definitely some hypotheses to check), 
and then the curve is modular. Basically, being lucky means that the image of the 
representation of Galois on 3-division points is GL(2,Z/3Z) .   
 
Suppose that you are unlucky, i.e., that your curve E has a rational subgroup of order 3. 
Basically by inspection, you can prove that if it has a rational subgroup of order 5 as 
well, then it can't be semistable. (You look at the four non-cuspidal rational points of 
X0(15).) So you can assume that E[5] is “nice.” Then the idea is to find an E' with the 
same 5-division structure, for which E'[3] is modular. (Then E' is modular, so E'[5] = 
E[5] is modular.) You consider the modular curve X which parameterizes elliptic curves 
whose 5-division points look like E[5] . This is a twist of X(5) . It's therefore of genus 0, 
and it has a rational point (namely, E), so it's a projective line. Over that you look at the 
irreducible covering which corresponds to some desired 3-division structure. You use 
Hilbert irreducibility and the Cebotarev density theorem (in some way that hasn't yet 
sunk in) to produce a non-cuspidal rational point of X over which the covering remains 
irreducible. You take E' to be the curve corresponding to this chosen rational point of X. 
 

-Ken Ribet, June 23, 1993, Cambridge, England 
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