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Abstract Given an n-point metric (P, d) and an integer k > 0, we consider the prob-
lem of covering P by k balls so as to minimize the sum of the radii of the balls.
We present a randomized algorithm that runs in nO(logn·log�) time and returns with
high probability the optimal solution. Here, � is the ratio between the maximum and
minimum interpoint distances in the metric space. We also show that the problem
is NP-hard, even in metrics induced by weighted planar graphs and in metrics of
constant doubling dimension.

Keywords Clustering · Polynomial time · Approximation algorithm

Work of M. Gibson, G. Kanade, E. Krohn, and K. Varadarajan was partially supported by NSF
CAREER award CCR 0237431.
Work of I.A. Pirwani was partially supported by Alberta Ingenuity. Most of this work was done while
I.A. Pirwani was at the University of Iowa, Iowa City, IA 52242, USA.
Part of this work was done while K. Varadarajan was visiting the Institute for Mathematical Sciences,
Chennai, India.

M. Gibson · G. Kanade · E. Krohn · K. Varadarajan (�)
Department of Computer Science, University of Iowa, Iowa City, IA 52242-1419, USA
e-mail: kvaradar@cs.uiowa.edu

M. Gibson
e-mail: mrgibson@cs.uiowa.edu

G. Kanade
e-mail: gkanade@cs.uiowa.edu

E. Krohn
e-mail: eakrohn@cs.uiowa.edu

I.A. Pirwani
Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
e-mail: pirwani@cs.ualberta.ca

mailto:kvaradar@cs.uiowa.edu
mailto:mrgibson@cs.uiowa.edu
mailto:gkanade@cs.uiowa.edu
mailto:eakrohn@cs.uiowa.edu
mailto:pirwani@cs.ualberta.ca


Algorithmica (2010) 57: 484–498 485

1 Introduction

Clustering is an important problem in computer science. This is evidenced by the
fact the researchers have studied numerous kinds of clustering problems (for a recent
survey, see [16]), each with a different flavor and suitability to a particular application.
The typical input is a collection of data points along with some relationship between
pairs of points (usually, distance in some metric space). The typical task is to group
the data points by some measure of similarity with the goal of minimizing some
objective function. For example, in facility location problems, a reasonable objective
is to try to minimize the sum of distances of clients to their nearest facilities, whereas
in k-center problems, the goal is to try to minimize the diameter of the largest cluster.
In some applications, for example, the k-server problem, there is a bound on the
maximum number of clusters that one is allowed to place to satisfy requests that arise
in an online setting from points that reside in some metric space. The objective then
is to place the at most k servers so as to minimize the sum of distances of demand
points to their nearest servers, over some period of time [15]. In applications where
the demand points are known a-priori and the demand frequency is continuous, the
goal is to satisfy the demand points by placing at most k base-stations. The task then
is to assign broadcast ranges to the base-stations so as to cover all the demand points
while minimizing the sum of these ranges. In such applications, the radius of coverage
assigned to any base-station models the amount of power spent to meet the assigned
demand points, and the total amount of power needed, the total cost, is modeled by
the sum of radii [1, 3–5, 13]. In this paper, we study a clustering problem motivated
by applications in base-station coverage.

Given a metric d defined on a set P of n points, we define the ball B(v, r) cen-
tered at v ∈ P and having radius r ≥ 0 to be the set {q ∈ P |d(v, q) ≤ r}. For κ > 0,
a κ-cover for subset Q ⊆ P is a set of at most κ balls, each centered at a point in P ,
whose union covers (contains) Q. The cost of a set D of balls, denoted cost(D), is
the sum of the radii of those balls. In this paper, we consider the (metric) minimum
cost k-cover problem:

Given a metric d on a set P of n points as above, and an integer k > 0, compute
a minimum cost k-cover for P .

Doddi et al. [5] consider the metric min-cost k-cover problem and the closely re-
lated problem of partitioning P into a set of k clusters so as to minimize the sum of the
cluster diameters. Following their terminology, we will call the latter problem clus-
tering to minimize the sum of diameters. They present a bicriteria poly-time algorithm
that returns O(k) clusters whose cost is within a multiplicative factor O(log(n/k)) of
the optimal. For clustering to minimize the sum of diameters, they also show that the
existence of a polynomial time algorithm that returns k clusters whose cost is strictly
within 2 of the optimal would imply that P = NP . Notice that because the “the sum
of diameters” is within a factor of 2 of “the sum of radii” (k-cover problem), the
hardness result does not imply the NP-hardness of the k-cover problem. Charikar and
Panigrahy [4] give a poly-time algorithm based on the primal-dual method that gives
a constant factor approximation—around 3.504—for the k-cover problem, and thus
also a constant factor approximation for clustering to minimize the sum of diameters.
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The well known k-center problem is a variant of the k-cover problem where
the cost of a set of balls is defined to be the maximum radius of any ball in the
set. The problem is NP-hard and admits a polynomial time algorithm that yields
a 2-approximation [10]. Several other formulations of clustering such as k-median
and min-sum k-clustering are NP-hard as well [6, 11].

Recently, Gibson et al. [9] consider the geometric version of the k-cover problem
where P ⊂ �l for some constant l. When the L1 or L∞ norm is used to define the
metric, they obtain a polynomial time algorithm for the k-cover problem. With the L2
norm, they give an algorithm that runs in time polynomial in n, the number of points,
and in log(1/ε) and returns a k-cover whose cost is within (1 + ε) of the optimal, for
any 0 < ε < 1.

Our Results

Our first result generalizes the algorithmic approach of Gibson et al. [9] to the met-
ric case. For the k-cover problem in the general metric setting, we obtain an exact
algorithm whose running time is nO(logn·log�), where � is the aspect ratio of the
metric space, the ratio between the maximum interpoint distance and the minimum
interpoint distance. The algorithm is randomized and succeeds with high probabil-
ity. Thus when � is bounded by a polynomial in n, the running time of the algo-
rithm is quasi-polynomial. This result for the k-cover problem should be contrasted
with the NP-hardness results for problems such as k-center, k-median, and min-sum
k-clustering, which hold when the aspect ratio is bounded by a polynomial in n.

The main idea that underlies this result is that if we probabilistically partition
the metric into sets with at most half the original diameter [2, 7], then with high
probability only O(logn) balls in the optimal k-cover of P are “cut” by the partition.
A recursive approach is then used to compute the optimal k-cover.

This algorithmic result raises the question of whether an algorithm whose running
time is quasi-polynomial in n is possible even when the aspect ratio is not polyno-
mially bounded. Our second result shows that this is unlikely by establishing the
NP-hardness of the k-cover problem. The aspect ratio in the NP-hardness construc-
tion is about 2n. The metrics obtained are induced by weighted planar graphs, thus
establishing the NP-hardness of the k-cover problem for this special case.

Our final result is that the k-cover problem is NP-hard in metrics of constant dou-
bling dimension for a large enough constant. This result is somewhat surprising given
the positive results of [9] for fixed dimensional geometric spaces—algorithmic results
for such spaces often generalize to metrics of constant doubling dimension.

The rest of this article is organized as follows. In Sect. 2, we present our algorithm
for the k-cover problem. In Sect. 3, we point out that our algorithmic result for the
metric k-cover problem readily yields a randomized approximation algorithm that
runs in time nO(logn log n

ε
) and returns with high probability a k-cover whose cost is

at most (1 + ε) times the cost of the optimal k-cover. Notice that the running time
does not depend on the aspect ratio of the input metric space. This approximation
algorithm is obtained by applying a simple transformation (involving discretization)
that reduces the approximate problem to several instances of the exact metric κ-cover
problem with aspect ratio bounded by poly(n/ε). In Sect. 4, we establish the NP-
hardness of the k-cover problem for metrics induced by weighted planar graphs. In
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Sect. 5, we establish NP-hardness for metrics of constant doubling dimension. We
conclude in Sect. 6 with some directions for future work.

2 Algorithm for General Metrics

We consider the k-cover problem whose input is a metric (P, d), where P is a set
of n points and d is a function giving the interpoint distances, and an integer k > 0.
We assume without loss of generality that the minimum interpoint distance is 1. Let
� denote diam(P ), the maximum interpoint distance. We present a randomized algo-
rithm that runs in nO(logn log�) time and with high probability returns the best k-cover
for P . We will assume below that k ≤ n.

The main idea for handling the metric case is that probabilistic partitions [2, 7]
can play a role analogous to the line separators were used in the geometric case [9].
To formalize this, let Q denote some subset of P such that |Q| ≥ 2, and consider
the following randomized algorithm (taken from [7]) that partitions Q into sets of
diameter at most diam(Q)/2:

Algorithm 1 Partition(Q)

Require: A subset Q ⊆ P , with |Q| ≥ 2.
Ensure: A partition of Q into {Q1,Q2, . . . ,Qτ } such that diam(Qi) ≤

diam(Q)/2,1 ≤ i ≤ τ .
1: Let π denote a random permutation of the points in Q.
2: Let β denote a random number in the range [diam(Q)/8,diam(Q)/4].
3: Let R ← Q.
4: for all i ← 1 to |Q| do
5: Let Qi ← {p ∈ R|d(p,π(i)) ≤ β}.
6: Let R ← R \ Qi .

Since each Qi is contained in a ball of radius at most diam(Q)/4, we have that
diam(Qi) ≤ diam(Q)/2. Clearly, the Qi also partition Q. Let us say that a ball
B ⊆ P is cut by this partition of Q if there are two distinct indices i and j such
that (B ∩Q)∩Qi �= ∅ and (B ∩Q)∩Qj �= ∅. The main property that the probabilis-
tic partition enjoys is encapsulated by the following lemma, whose proof follows via
the methods of Fakcharoenphol et al. [7].

Lemma 1 Let B ⊆ P be some ball of radius r . The probability that B is cut by the
partition of Q output by Partition(Q) is at most 16r

diam(Q)
· (1 + log |Q|).

Proof Let q1, . . . q|Q| denote the ordering of the points in Q according to increasing
order of distance from B ′ = B ∩ Q, with ties broken arbitrarily. We may assume that
B ′ �= ∅ for otherwise the lemma trivially holds. For each qj let aj (resp. bj ) denote
the distance to the closest (resp. furthest) point in B ′. By the triangle inequality it
follows that bj − aj ≤ 2r . We say that π(i) settles B if i is the first index for which
some point in B ′ belongs to Qi . Note that exactly one point in Q settles B . We say
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that π(i) cuts B if π(i) settles B and at least one point in B ′ is not assigned to Qi .
The probability that B is cut by the partition equals

∑

i

Pr[π(i) cuts B] =
∑

j

Pr[qj cuts B].

The event that qj cuts B requires the occurrence of two events: E1, the event that
β lands in the interval [aj , bj ), and E2, the event that qj appears before q1, . . . , qj−1
in the ordering π . Using independence,

Pr[qj cuts B] ≤ Pr[E1]·Pr[E2|E1] = Pr[E1]·Pr[E2]

≤ 2r

diam(Q)/8
· 1

j
= 16r

diam(Q)
· 1

j
.

So the probability that B is cut by the partition is bounded above by

16r

diam(Q)

∑

j

1

j
≤ 16r

diam(Q)
· (1 + log |Q|),

where the last inequality follows from the fact that
∑|Q|

j=1
1
j

≤ 1 + log |Q|. �

Let S denote the optimal κ-cover for Q some κ > 0. The following lemma states
the main structural property that S enjoys.

Lemma 2 The expected number of balls in S that are cut by Partition(Q) is at most
c0· log |Q|, where 0 < c0 ≤ 32 is a constant. Consequently, the probability is at least
1/2 that the number of balls in S that are cut by Partition(Q) is at most c logn, where
c = 2· c0.

Proof The expected number of balls in S cut is equal to

∑

B∈S

Pr[B is cut] ≤ 16· (1 + log |Q|)
∑

B∈S

radius(B)

diam(Q)
= 16· (1 + log |Q|) cost(S)

diam(Q)
.

Observe that cost(S) ≤ diam(Q) since Q can be covered by a single ball of radius
diam(Q). So,

E
[

# of balls in S
that are cut

] ≤ 16· (1 + log |Q|) ≤ c0· log |Q| ≤ c0· logn.

In the penultimate inequality, we may assume c0 ≤ 32 since 1 + log |Q| ≤ 2 log |Q|,
which in turn follows because |Q| ≥ 2.

By Markov’s inequality, Pr
[more than 2· c0· logn

balls in S are cut

] ≤ 1
2 . �

The Randomized Algorithm

We describe a recursive algorithm BC-Compute that takes as arguments a set
Q ⊆ P and an integer 0 ≤ κ ≤ n and returns with high probability an optimal κ-
cover for Q. We begin by noting that we may restrict our attention to balls B(x, r)
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Algorithm 2 BC-Compute(Q,κ)

Require: A subset Q ⊆ P , and an integer 0 ≤ κ ≤ k.
Ensure: Return a κ-cover of Q having optimal cost, with high probability.

1: If |Q| = 0, return the empty set.
2: Otherwise, if κ = 0, return {I} (not possible to cover).
3: Otherwise, if |Q| = 1, return the singleton set consisting of the ball centered at

the unique point in Q and having radius 0.
4: for all 2 log2 n iterations do
5: Call Partition(Q) to obtain a partition of Q into two or more non-empty

sets. Let Q1, . . . ,Qτ denote the nonempty sets in this collection.
6: for all sets C of at most c logn balls, where c is the constant in Lemma 2 do
7: Let Q′

i be the points in Qi not covered by C. For each 1 ≤ i ≤ τ and 0 ≤
κ1 ≤ κ , recursively call BC-Compute(Q′

i , κ1) and store the set returned in
the local variable best(Q′

i , κ1).
8: For 0 ≤ i ≤ τ − 1, let Ri = ⋃τ

j=i+1 Q′
j . Note that Rτ−1 = Q′

τ and Ri =
Q′

i+1 ∪ Ri+1 for 0 ≤ i ≤ τ − 2.
9: for all i ← τ − 2 down to 0 and 0 ≤ κ1 ≤ κ , do

10: set local variable best(Ri, κ1) to be the lowest cost solution among
{best(Q′

i+1, κ
′) ∪ best(Ri+1, κ1 − κ ′)|0 ≤ κ ′ ≤ κ1}.

11: Let S denote the lowest cost solution best(R0, κ − |C|) ∪ C over all
choices of C tried above with |C| ≤ κ .

12: Return the lowest cost solution S obtained over the �(logn) trials.

whose radius r equals d(x, q) for some q ∈ P . Henceforth in this section we only
refer to this set of balls. For easing the description of the algorithm, it is convenient
to add to this set of balls an element I whose cost is ∞. Any subset of this enlarged
set of balls that includes I will also have a cost of ∞.

Running Time To solve an instance (Q,κ) of the problem with diam(Q) ≥ 50,
the algorithm makes nO(logn) recursive calls to instances with diameter at most
diam(Q)/2. The additional book keeping takes nO(logn) time. It follows that the run-
ning time of the algorithm invoked on the original instance (P, k) is nO(logn·log�).

Correctness We will show that BC-Compute(P, k) computes an optimal k-cover
for P with high probability. We begin by noting that the base case instances (Q,κ)

are solved correctly with a probability of 1. We will show by induction on |Q| that
any instance (Q,κ) with |Q| ≥ 2 is optimally solved with a probability of at least
1 − |Q|−1

n2 .

If the (Q,κ) instance happens to fit in one of the base cases, we are done.
Otherwise, consider an optimal κ-cover OPT for Q. It is enough to show that
BC-Compute(Q,κ) returns a κ-cover of optimal cost with a probability of at least
1 − |Q|−1

n2 .

By Lemma 2, the probability is at least 1 − 1
n2 that one of the 2 log2 n calls to

Partition(Q) returns a partition (Q1, . . . ,Qτ ) of Q into τ ≥ 2 sets such that no
more than c logn balls in OPT are cut by the partition. Assuming this good event
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happens, fix such a partition (Q1, . . . ,Qτ ) of Q and consider the choice of C that
exactly equals the balls in OPT that are cut by the partition. The balls in OPT \ C are
not cut by the partition and can be partitioned into subsets (OPT1, . . . ,OPTτ ) (some
of these can be empty) such that for any ball B ∈ OPTi , we have B ∩ Q ⊆ Qi . It
is easy to see that OPTi must be an optimal |OPTi |-cover for Q′

i . By the induction
hypothesis, BC-Compute(Q′

i , |OPTi |) returns an optimal |OPTi |-cover for Q′
i with

a probability of at least 1 − |Q′
i |−1
n2 if |Q′

i | ≥ 2 and with a probability of 1 otherwise.
The probability that BC-Compute(Q′

i , |OPTi |) returns an optimal |OPTi |-cover for
Q′

i for every i is at least

∏

i:|Q′
i |≥2

1 − |Q′
i | − 1

n2
≥

∏

i

1 − |Qi | − 1

n2
≥ 1 − |Q| − 2

n2
.

Assuming this second good event also happens, it follows from an easy backwards
induction on i that best(Ri,

∑
j>i |OPTj |) is a (

∑
j>i |OPT|j )-cover for Ri with

cost at most
∑

j>i cost(OPTj ). Thus best(R0, κ − |C|) is an (κ − |C|)-cover for
R0 = ∑τ

i=1 Q′
i with cost at most

∑τ
i=1 cost(OPTi ). Thus best(R0, κ − |C|) ∪ C is

a κ-cover of Q with cost at most cost(OPT). The probability of this happening is at
least the product of the probabilities of the two good events we assumed, which is at
least (1 − |Q|−1

n2 ). This completes the inductive step, because BC-Compute(Q,κ)

returns the lowest cost κ-cover among the 2 log2 n κ-covers that it sees.

Theorem 3 There is a randomized algorithm that, given a set P of n points in a
metric space and an integer k, runs in nO(logn·log�) time and returns, with probability
at least 1/2, an optimal k-cover for P . Here � is an upper bound on the ratio between
the maximum and minimum interpoint distances within P .

3 Approximation in Quasi-Polynomial Time

In this section, we describe how the result of the previous section can be used to obtain
a quasi-polynomial time approximation scheme for the k-cover problem. That is, we
describe a randomized algorithm that takes as input a set P of n points in a metric
space, an integer k, and a parameter 0 < ε < 1, and returns a k-cover whose cost is,
with probability at least 1/2, within a multiplicative factor of (1 + ε) of the optimal
k-cover; the running time of the algorithm is nO(logn log n

ε
). Since our algorithm is

a rather standard way of reducing the problem to instances whose aspect ratio is
bounded by a polynomial in n

ε
, we describe it here only for completeness and only

sketch the proof of correctness. We assume without loss of generality that 1 ≤ k ≤ n.
Let λ∗ denote the cost of the optimal k-cover of P . We first obtain a crude approx-

imation to λ∗ by computing in polynomial time a 2-approximation λ to the optimal
k-center cost for P [10]. Observe that λ

2 ≤ λ∗ ≤ kλ. We then compute a minimum
spanning tree of P (under the input metric). Let P1, . . . ,Pτ denote the connected
components obtained by removing from the minimum spanning tree all edges of
length strictly greater than kλ. Notice that the distance between any two points that
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are in different components is strictly larger than kλ. This implies that any ball in an
optimal k-cover of P is contained within one of the Pi . The maximum inter-point
distance within each Pi is at most nkλ.

For each Pi , and for each 1 ≤ k1 ≤ k, we compute an approximation best(Pi, k1)

to the optimal k1-cover of Pi as described below. Compute a minimal subset Qi ⊆ Pi

with the property that for each p ∈ Pi , there is a q ∈ Qi such that d(p,q) < ελ

8n2 .
The aspect ratio of Qi is bounded by a polynomial in n

ε
. Run the algorithm of the

previous section O(logn) times with Qi and k1, and take the minimum cost solution.
This is, with probability at least 1− 1

2n2 , the optimal k1-cover of Qi . Expand the radii

of each of these balls by ελ

8n2 to obtain a k1-cover best(Pi, k1) of Pi . It is not hard to

see that with probability at least 1 − 1
2n2 the cost of best(Pi, k1) exceeds the cost of

the optimal k1-cover of Pi by at most ελ
2n

.
Let R1 = P1, and let Ri = Ri−1 ∪ Pi for 2 ≤ i ≤ τ ; note that Rτ = P . Assign

best(R1, k1) to best(P1, k1) for each 1 ≤ k1 ≤ k. For each i = 2, . . . , τ and for each
i ≤ k1 ≤ k, set best(Ri, k1) to be the min-cost solution among

{best(Ri−1, j) ∪ best(Pi, k1 − j) | i − 1 ≤ j ≤ k1 − 1}.
We return best(Rτ , k) as our k-cover of P . It can be verified that with probability at
least 1/2 the cost of this k-cover is within an additive ελ

2 ≤ ελ∗ of λ∗, the cost of an
optimal k-cover.

Theorem 4 There is a randomized algorithm that takes as input a set P of n points in
a metric space, an integer k, and a parameter 0 < ε < 1, and returns, in nO(logn log n

ε
)

time, a k-cover for P whose cost is, with probability at least 1/2, within a multiplica-
tive factor of (1 + ε) of the optimal k-cover.

4 NP-Hardness of Min-Cost k-Cover

A natural question is whether there is a quasipolynomial time algorithm in n (that
returns the exact optimum) for the case where the input metric has unbounded aspect
ratio. This is unlikely to be the case because, as we show in this section, the general
problem is NP-hard even in case of a planar metric. We give a reduction from a
version of the planar 3-SAT problem—the pn-planar 3-SAT problem. This problem
was shown to be NP-complete in [14]. Planar 3-SAT is defined as follows: Let 
 =
(X,C) be an instance of 3SAT, with variable set X = {x0, . . . , xn−1} and clauses
C = {c1, . . . , cm} such that each clause consists of exactly 3 literals. Define a formula
graph G
 = (V ,E) with vertex set V = X ∪ C and edges E = E1 ∪ E2 where E1 =
{(xi, xi+1)|0 ≤ i ≤ n − 1}1 and E2 = {(xi, cj )|cj contains xi or xi}. A 3SAT formula

 is called planar if the corresponding formula graph G
 is planar. The edge set E1
defines a cycle on the vertices X, and thus divides the plane into exactly 2 faces. Each
node cj ∈ C lies in exactly one of those two faces. In the pn-planar 3SAT problem,

1Here we assume that the arithmetic wraps around i.e. (n − 1) + 1 = 0.
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we have the additional restriction that there exists a planar drawing of G
 such that
if cj and cj ′ contain opposite occurrences of the same variable xi , then they lie in
opposite faces. In other words, all clauses with the literals xi lie in one of the two
faces and all clauses with xi lie in the other face. We have to determine whether there
exists an assignment of truth values to the variables in X that satisfies all the clauses
in C.

We describe a simple transformation, easily seen to be effected by a polynomial
time algorithm, from such a pn-planar 3SAT instance to an instance of the decision
version of the k-cover problem, where in addition to the input metric and k, we are
also given a target τ , and we wish to determine if there is a k-cover with cost at
most τ . In the instance produced by our transformation, the metric is induced by a
weighted planar graph G = (V ,E), and the target τ equals 2k −1. The transformation
has the property that there is a k-cover in the metric of cost at most 2k − 1 if and only
if the original pn-planar 3SAT instance is satisfiable.

We set k to be n, the number of variables in the 3SAT instance. The vertex set V

of the graph is a union of k +2 sets: (a) a set X = {x0, x0, . . . , xk−1, xk−1} that can be
identified with the set of variables of the pn-planar 3SAT instance with each variable
occurring twice—once as a positive literal and once as a negative literal, (b) a set
C = {c1, . . . , cm} that can be identified with the set of clauses of the pn-planar 3SAT
instance, and (c) sets W 0, . . . ,Wk−1, where each Wl consists of k + 1 vertices. To
obtain the edge set E, we add an edge between each vertex xl and xl in X with weight
2l for 0 ≤ l ≤ k − 1. For each vertex xl ∈ X we add an edge between xl and every
vertex in Wl of weight 2l for 0 ≤ l ≤ k − 1. Analogously, we add an edge between
each vertex xl and every vertex in Wl again of weight 2l . In addition we add edges
between every vertex ci ∈ C and every variable vertex xl or its negation xl whichever
appears in it of weight 2l . Observe that this graph G is planar. It is crucial for this that
in the planar drawing of the formula graph G
, the clauses that contain the literal xi

lie in one face of the cycle induced by E1, whereas the clauses that contain xi lie in
the opposite face, for each variable xi . See Fig. 1 for an illustration.

Claim 5 Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤
k − 1, a ball centered at either xl or xl with radius at least 2l .

Proof Consider any k-cover of V and let t be the largest index such that there is no
ball in the k-cover centered at either xt or xt and having radius at least 2t . So for
each t + 1 ≤ l ≤ k − 1, there is a ball Bl in the k-cover centered at either xl or xl

and having radius at least 2l . Since Wt has k + 1 points in it, there is point a ∈ Wt

that is not the center of any ball in the k-cover. Let B be some ball in the k-cover that
covers a. If B = Bl for some t + 1 ≤ l ≤ k − 1, then Bl has radius at least 2l + 2 · 2t .
In this case the k-cover has cost at least 2k−1 + 2k−2 · · ·2t+1 + 2 · 2t = 2k . If B �= Bl

for any t + 1 ≤ l ≤ k − 1, then the radius of B is at least 2 · 2t , since the distance of a

from any point other than xt and xt is at least 2 · 2t . Thus in this case too the k-cover
has cost at least 2k−1 + 2k−2 · · ·2t+1 + 2 · 2t = 2k . �

Now suppose the original pn-planar 3SAT instance is a yes instance. So there is
an assignment of truth values to x0, . . . , xk−1 such that all clauses in C are satisfied.
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Consider the set of k balls B0, . . . ,Bk−1, where Bl is centered at xl or xl (whichever
is satisfied by the assignment) and has radius 2l . It is easily checked that these balls
form a k-cover of V of cost 20 + 21 + · · · + 2k−1 = 2k − 1.

Now suppose the original pn-planar 3SAT instance is a no instance. We claim
that any k-cover of V has cost strictly greater than 2k − 1 in this case. Suppose this
is not the case and consider a k-cover of cost at most 2k − 1. As a consequence of
the claim, such a k-cover must consist of balls B0, . . . ,Bk−1 where Bl is centered at
either xl or xl and has radius precisely 2l . Since these balls must cover each vertex
in C, it follows that the assignment of truth values to variables in X which comprises
of xl being true if the ball Bl is centered at xl and false if it is centered at xl satisfies
all clauses in C. This contradicts the supposition that the original pn-planar 3SAT
instance is a no instance.

Theorem 6 The (decision version of the) problem of computing an optimal k-cover
for an n-point planar metric (P, d) is NP-hard.

5 The Doubling Metric Case

We now consider the k-cover problem when the input metric (P, d) has doubling
dimension bounded by some constant ρ ≥ 0. The doubling dimension of the metric
(P, d) is said to be bounded by ρ if any ball B(x, r) in (P, d) can be covered by 2ρ

balls of radius r/2 [12]. In this section, we show that for a large enough constant ρ,
the k-cover problem for metrics of doubling dimension at most ρ is NP-hard.

The proof is by a reduction from a restricted version of 3SAT where each vari-
able appears in at most 5 clauses [8]. Let 
 be such a 3-CNF formula with variables
x0, . . . , xn−1 and clauses c1, . . . , cm. We describe a simple transformation, easily seen
to be effected by a polynomial time algorithm, from such a 3SAT instance 
 to an
instance of the decision version of the k-cover in a metric induced by a weighted
graph G = (V ,E), and with the target cost being 2k − 1. The metric will have dou-
bling dimension bounded by some constant. The transformation has the property that
there is a k-cover in the metric of cost at most 2k − 1 if and only if the original 3SAT
instance is satisfiable.

The transformation is similar to the one in the previous section with some modifi-
cations to ensure the doubling dimension property.

We set k = n, the number of variables in the 3SAT formula. The vertex set V of
the graph is a union of k + 2 sets: (a) a set X = {x0, x0, . . . , xk−1, xk−1} that can be
identified with the set of literals in 
, (b) a set C = {c1, . . . , cm} that can be identified
with the set of clauses of 
, and (c) sets W 0, . . . ,Wk−1, where each Wl consists of
nl = 8(l + 1)2 + 1 vertices wl

1, . . . ,w
l
nl

. To obtain the edge set E, we add an edge
between xl and xl with weight 2l for 0 ≤ l ≤ k − 1. We add an edge between xl and
every vertex in Wl of weight 2l for 0 ≤ l ≤ k − 1. Analogously, we add an edge
between xl and every vertex in Wl again of weight 2l . In addition we add edges
between every vertex ci ∈ C and every literal that appears in the clause ci . If the
literal is either xl or xl , the weight of the corresponding edge is 2l . Finally for each
0 ≤ l ≤ n− 1 and each 1 ≤ i ≤ nl − 1, we add an edge of weight 2l/(l + 1)2 between
wl

i and wl
i+1. See Fig. 2 for an illustration of the transformation.
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Fig. 2 a The gadget for the variable xl in 
. Each edge between wl
i

and wl
i+1 has weight 2l /(l + 1)2

and the number of wl
i
’s is 8(l + 1)2 + 1. b A representation of an instance of k-clustering on a doubling

metric constructed from an instance of 
 = (¬x0 ∨ x3 ∨ x4) ∧ (x0 ∨ ¬x4 ∨ ¬x5) ∧ (x0 ∨ ¬x1 ∨ ¬x3)

∧ (x1 ∨ ¬x2 ∨ x3). Satisfying assignment X = (0,1,1,0,0,1). All “clause-literal” edges have weight 2l

for variable xl . The optimal cover is highlighted with grey “blobs”. Weight of the covering is 26 − 1

Lemma 7 There is a constant ρ ≥ 0 so that the doubling dimension of the metric
induced by the graph G = (V ,E) is bounded by ρ.

Proof Let B(x, r) be some ball in the metric. If r < 1, then either (a) the ball consists
of a singleton vertex, or (b) B(x, r) ⊆ Wl for some l and the subgraph of G induced
by B(x, r) is a path. In either case, it is easily verified that O(1) balls centered within
B(x, r) and having radius r/2 cover B(x, r).

We therefore consider the case r ≥ 1. Let t be the largest integer that is at most
n−1 such that 2t ≤ r . For each s ∈ {t −3, t −2, t −1, t}, we place balls of radius r/2
centered at (i) {xs, xs} ∩ B(x, r); (ii) clause vertices incident to xs or xs that are in
B(x, r); (iii) O(1) points of B(x, r)∩Ws so that these balls cover B(x, r)∩Ws (this
is possible because B(x, r) ∩ Ws induces a path of length at most 2s+3). In addition,
if x ∈ Wl for some l, we place (iv) O(1) balls of radius r/2 at points of B(x, r)∩Wl

so that these balls cover B(x, r) ∩ Wl . Finally, we place (v) a ball of radius r/2 at x.
Observe that we have placed O(1) balls and we will show that these cover B(x, r).
(Note that the assumption that each variable in the input formula appears in at most
5 clauses is used in concluding that the number of balls placed in (ii) is O(1).) Let C

denote the set of centers at which we have placed balls.
Let y ∈ B(x, r) be a point that is not in C or in Ws for s ∈ {t − 3, t − 2, t − 1, t} or

in Wl (if x ∈ Wl). Fix a shortest path from x to y and let x′ be the last vertex on this
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path that is in C. We first prove that none of the internal vertices on the path from x

to y is in Wq for any q .

Claim 8 If both x and y do not belong to the same Wl , then no internal vertex w

along the shortest path from x to y can belong to any Wq .

Proof For the sake of contradiction, assume the contrary. Let w be the last internal
vertex along the shortest path that is part of some Wq . We will prove that such a
path cannot be of minimum length, deriving a contradiction. We examine two cases:
(a) y ∈ Wq , and (b) y /∈ Wq .

(a) Since x /∈ Wq , there is an ancestor of w along the shortest path that is one of
{xq, xq}. Without loss of generality, let xq be this ancestor. So, the shortest path pays
a cost of at least 2q + 2q

(q+1)2 to get to y from xq . But, by construction, there is an

edge {xq, y} having cost 2q and we get a cheaper shortest path. A contradiction.
(b) Clearly there is a decendent from w along the shortest path that is one of

{xq, xq}. Without loss of generality, let it be xq . Whether x ∈ Wq or not, the shortest
path pays of cost of at least 2q + 2q

(q+1)2 to get to xq from the immediate predecessor
of w. However, in either case, there is an edge directly from this predecessor of w to
xq of cost 2q , and we get a cheaper shortest path. A contradiction. �

Furthermore, if x ∈ Wl for some l, then by assumption y �∈ Wl . Thus all edges of
the subpath from x′ to y have weight 2q for some 0 ≤ q ≤ n − 1. No such edge can
have weight 2t+1 or greater because 2t+1 > r if t ≤ n − 2. No such edge can have
weight 2s for s ∈ {t − 3, t − 2, t − 1, t} because otherwise the endpoint of the edge
closer to y would be in C. Thus every edge on the subpath from x′ to y has weight at
most 2t−4. It is easy to see that the subpath contains at most 3 edges of weight 2q for
any q ≤ t − 4. Thus the weight of the subpath from x′ to y is at most

3(2t−4 + 2t−5 + · · · + 20) < 3 · 2t−3 < 2t−1 < r/2.

So y is in the ball of radius r/2 centered at x′. �

Claim 9 Any k-cover of V whose cost is at most 2k − 1 includes, for each 0 ≤ l ≤
k − 1, a ball centered at either xl or xl with radius at least 2l .

Proof Consider any k-cover of V and let t be the largest index such that there is no
ball in the k-cover centered at either xt or xt and having radius at least 2t . So for
each t + 1 ≤ l ≤ k − 1, there is a ball Bl in the k-cover centered at either xl or xl and
having radius at least 2l .

If some point in Wt is covered by some Bl for t +1 ≤ l ≤ k −1, then Bl has radius
at least 2l + 2 · 2t . In this case the k-cover has cost at least 2k−1 + 2k−2 · · ·2t+1 + 2 ·
2t = 2k . If some point in Wt is covered by a ball B different from the Bl’s and not
centered at any of the points in Wt , then the radius of B is at least 2 · 2t . (Note that
by assumption B can’t be centered at xt or xt .) Thus in this case too the k-cover has
cost at least 2k−1 + 2k−2 · · ·2t+1 + 2 · 2t = 2k .
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The only remaining case is when each point in Wt is covered by some ball centered
at a point in Wt . Since there can be at most t + 1 balls in the k-cover centered within
Wt , the sum of the radii of these balls is at least

1

2

(
(nt − 1)

2t

(t + 1)2
− (t + 1)

2t

(t + 1)2

)
> 2 · 2t .

The k-cover has cost at least 2k−1 + 2k−2 · · ·2t+1 + 2 · 2t = 2k . �

We now argue that the transformation has the property that there is a k-cover in the
metric of cost at most 2k −1 if and only if the original 3SAT instance 
 is satisfiable.

Suppose that 
 is satisfiable. Then we can choose for each 0 ≤ l ≤ k − 1 exactly
one of xl or xl such that within each clause of 
 there is a chosen literal. Consider
the set of k balls B0, . . . ,Bk−1 where Bl has radius 2l and is centered at xl or xl ,
whichever was chosen. These balls form a k-cover of V with cost 2k − 1.

For the reverse direction, consider a k-cover of the target metric space of cost
at most 2k − 1. It follows from Claim 9 that the k-cover must consist of balls
B0, . . . ,Bk−1, where Bl is centered at either xl or xl and has radius precisely 2l .
Let us choose the literals corresponding to the centers of these balls. For each l, we
clearly choose exactly one of xl of xl . Consider any clause vertex c. It must be cov-
ered by at least one of the balls Bl . Given the radii of the balls, the only balls that can
cover c are the ones centered at literals contained in the clause. It follows that our set
of chosen literals contains, for each clause in 
, at least one of the literals contained
in the clause. Thus 
 is satisfiable.

Theorem 10 For a large enough constant ρ ≥ 0, the (decision version of the) k-cover
problem for metrics of doubling dimension at most ρ is NP-hard.

6 Future Work

We conclude with a short discussion on several tantalizing questions that remain
open. A comparison of the positive and negative results (in Sects. 2 and 4, respec-
tively) shows that the aspect ratio plays a crucial role in making the problem NP-
hard. As a result, the existence of an exact, polynomial-time algorithm for the metric
induced by an unweighted graph has not been ruled out. It would be interesting to
develop such an algorithm. It would also be interesting to generalize this to an al-
gorithm whose running time is polynomial in the aspect ratio and in the number of
input points, for general metrics. On the question of approximation, our quasi-PTAS
(in Sect. 3) raises the question of whether a PTAS for the k-cover problem is possible.

Acknowledgements We thank Chandra Chekuri for his suggestion to study the problem and the anony-
mous reviewers for their helpful comments.
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