Set	For class on	Chapter	Do or read
1	Feb. 4	Preface	pages vii-xi
		A Sampler	pages 1-3,5,8
2	Feb. 6	Probability	pages 85-93
3	Feb. 9		p. 96: Sex and Money, Three Children
4	Feb. 11		work on Problem set \#1
5	Feb. 13		p. 95: Ideal Tetrahedron
6	Feb. 16		p. 99: A Random-Integer Game
7	Feb. 18		work on Problem set \#2
8	Feb. 20		p. 96: Short Sticks
9	Feb. 23		p. 95: Exit Polls
10	Feb. 25		Compute the "expected" count* on a backgammon roll. review for Quiz \#1
11	March 2		p. 98: How Grim the Reaper?
12	March 4		review for $\operatorname{Exam}^{\dagger}$ \#1
13	March 9		p. 98: Can You Trust This Headline?
14	March 11		p. 99: A Serious Waiting Game
15	March 13		p. 94: Red and White
16	March 16		p. 95: Teachers vs. Students
17	March 18		work on Problem set \#3
18	March 20	Numbers	pages 33-35 p. 44: Friday the 13th Again
19	March 30		p. 36: How Often Does Lightning Strike?
20	April 1		p. 38: Decimal versus Binary
21	April 3		p. 37: What is This?
22	April 6		p. 37: A Never-Ending Decimal
23	April 8		p. 37: A Wild Sequence review for Quiz \#2
24	April 13		p. 43: A Reality Test
25	April 15		review for Exam ${ }^{\dagger}$ \#2
26	April 20		p. 40: Do Their Behaviors Correspond?
27	April 22		work on Problem set \#4
28	April 24	Geometry	pages 9-11; p. 23: A Chip Off the Old Block
29	April 27		p. 22: A Platonic Solid
30	April 29		work on Problem set \#5
31	May 1		p. 16: Mastic Spreader
32	May 4		p. 14: Church Window
33	May 6		review for Quiz \#3
34	May 11		review for Exam ${ }^{\dagger}$ \#3

*In backgammon, a player's count on a given roll of two dice is determined as follows: If doubles are rolled, the count is twice the total on the two dice (thus double 5 would give a count of 20). Otherwise, the count is simply the total on the two dice.
${ }^{\dagger}$ See d2l for old exam questions.

