Chemistry 106 Fall 2006 Exam 3 Form A

1. In some towns where steel mills and paper pulp mills are close together a brown deposit of FeS(s) forms from the reaction of H₂S and particulate iron from the steel mill. The overall reaction is shown below. K_{total} = 8 \times 10^{-19}. What is the value of the equilibrium constant for the reverse reaction?

\[4\text{Fe(s)} + 3\text{O}_2(g) + 4\text{H}_2\text{S}(g) + 4\text{H}^+(aq) \rightleftharpoons 6\text{H}_2\text{O}(l) + 4\text{FeS}(s)\]

\[K_{\text{total}} = 8 \times 10^{-19}\]

A. \(1.25 \times 10^{-18}\)
B. \(1.250 \times 10^{18}\)
C. \(8 \times 10^{19}\)
D. \(1 \times 10^{18}\)
E. \(-8 \times 10^{-19}\)

2. Write the equilibrium expression for the reaction

\[\text{Zn}^{2+} (aq) + 2 \text{NH}_3 \rightleftharpoons [\text{Zn} (\text{NH}_3)_2]^{2+}\]

A. \(K = [\text{Zn}^{2+}(aq)] + 2 [\text{NH}_3] + [\text{Zn} (\text{NH}_3)_2]^{2+}\)
B. \(K = \left\{\left[\text{Zn} (\text{NH}_3)_2\right]^{2+}\right\} / \left\{[\text{Zn}^{2+}(aq)] [\text{NH}_3]^2\right\}\)
C. \(K = \left\{\left[\text{Zn}^{2+}(aq)\right] + 2 [\text{NH}_3] \right\} / \left\{\left[\text{Zn} (\text{NH}_3)_2\right]^{2+}\right\}\)
D. \(K = \left\{\left[\text{Zn} (\text{NH}_3)_2\right]^{2+}\right\} / \left\{[\text{Zn}^{2+}(aq)] + 2 [\text{NH}_3] \right\}\)
E. \(K = [\text{Zn}^{2+}(aq)] [\text{NH}_3]^2 / \left\{\left[\text{Zn} (\text{NH}_3)_2\right]^{2+}\right\}\)

3. If the reaction quotient \(Q\) has a larger value than the related equilibrium constant \(K\)

A. the reaction will release heat to achieve equilibrium.
B. the reaction will absorb heat to achieve equilibrium.
C. the reaction will continue to make more products.
D. the reaction is at equilibrium.
E. the reaction will consume products and make reactants.

4. Given the following reactions and their equilibrium constants calculate the equilibrium constant for the overall reaction.

\[\text{H}_3\text{PO}_4(aq) \rightleftharpoons \text{H}_2\text{PO}_4^-(aq) + \text{H}^+(aq) \quad K_1 = 7.52 \times 10^{-3}\]
\[\text{H}_2\text{PO}_4^-(aq) \rightleftharpoons \text{HPO}_4^{2-}(aq) + \text{H}^+(aq) \quad K_2 = 6.2 \times 10^{-8}\]
\[\text{HPO}_4^{2-}(aq) \rightleftharpoons \text{PO}_4^{3-}(aq) + \text{H}^+(aq) \quad K_3 = 2.2 \times 10^{-13}\]
\[\text{Ca}_3(\text{PO}_4)_2(s) \rightleftharpoons 3\text{Ca}^{2+}(aq) + 2\text{PO}_4^{3-}(aq) \quad K_4 = 2.1 \times 10^{-33}\]

Overall reaction:
\[2\text{H}_3\text{PO}_4(aq) + 3\text{Ca}^{2+}(aq) \rightleftharpoons \text{Ca}_3(\text{PO}_4)_2(s) + 6\text{H}^+(aq)\]

A. \(7.2 \times 10^{30}\)
B. \(4.6 \times 10^{54}\)
C. \(2.2 \times 10^{-55}\)
D. \(2.0 \times 10^{11}\)
E. \(5.0 \times 10^{-12}\)
5. What is equal in an equilibrium?
 A. the rate constants for the forward and reverse reactions
 B. the time that a particular atom or molecule spends as a reactant and product
 C. the concentrations of reactant and products
 D. the rate of the forward and reverse reaction
 E. none of the above

6. If K for a reaction is very small
 A. ΔH^o is definitely positive.
 B. ΔG^o is definitely positive.
 C. ΔG^o is definitely negative.
 D. ΔH^o is definitely negative.
 E. none of the above

7. Consider the equilibrium:
 $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \quad K_c = 2.62 \times 10^3$$
 What is K_p for pressure units of atm at a temperature of 298 K?
 A. 107
 B. 6.41 x 10^4
 C. 1.06
 D. 6.49 x 10^6
 E. 4.38

8. For a particular hypothetical reaction $A + 2B \rightleftharpoons C \quad \Delta G^o = 137.0 \text{ kJ/mol}$. What is the equilibrium constant for this reaction at 298 K?
 A. 9.698 x 10^{-25}
 B. 2.724 x 10^{21}
 C. 0.9462
 D. 1.057
 E. 3.689 x 10^{-3}

9. Under what conditions are the values of K_c and K_p for a given gas phase equilibrium the same?
 A. same temperature
 B. no change in moles of gas in the reaction
 C. if the stoichiometric coefficients are the same on the reactant and product sides
 D. all the above
 E. none of the above

10. Given the two measurements below, calculate ΔH^o.

 $\begin{array}{|c|c|}
 \hline
 \text{T, °C} & \text{K} \\
 \hline
 10 & 2.5 \times 10^3 \\
 25 & 9.4 \times 10^4 \\
 \hline
 \end{array}$

 A. 170 kJ/mol
 B. 452 J/mol
 C. –5.21 kJ/mol
 D. 5.21 kJ/mol
 E. –161 kJ/mol
11. The equilibrium constant for an endothermic reaction
 A. is temperature independent.
 B. increases with increasing temperature.
 C. decreases with increasing temperature.
 D. cannot be predicted.
 E. cannot be predicted without knowing ΔS too.

12. Mercury ions exist as the mercurous dimer Hg$_2^{2+}$ and Hg$^+$. If Hg$_2^{2+}$ is in contact with liquid mercury, Hg(l), the equilibrium below is established:

 \[
 \text{Hg}^+(aq) + \text{Hg}(l) \rightleftharpoons \text{Hg}_2^{2+}(aq) + \text{Hg}(l) \quad K = 1.14 \times 10^{-2}.
 \]

 If a 0.100 M solution of Hg$^+$ is put in contact with liquid mercury, what will be the resulting equilibrium concentration of Hg$_2^{2+}$?

 A. 1.14×10^{-2} M
 B. 1.13×10^{-3} M
 C. 0.100 M
 D. 0.0887 M
 E. 0.1114 M

13. When can an "x" be ignored in solving an algebraic form of an equilibrium expression?
 A. whenever it simplifies the algebraic expression enough to allow calculation
 B. whenever it is added to or subtracted from a concentration value
 C. whenever it is in the denominator
 D. whenever it is added to or subtracted from a concentration value that is large in comparison to it
 E. whenever it is squared or raised to any power higher than 1

14. A catalyst
 A. lowers activation energies in both the forward and reverse reactions in a chemical equilibrium.
 B. is necessary for any reaction to go to completion.
 C. changes the value of an equilibrium constant by changing the forward and reverse activation energies.
 D. stresses an equilibrium by consuming reactants.
 E. none of the above

15. For a particular hypothetical reaction A + 2B \rightarrow C in the gas phase how does decreasing the pressure affect the equilibrium?
 A. It shifts the equilibrium towards more reactants.
 B. It does not change the equilibrium concentrations.
 C. The relative concentrations of B and C do not change.
 D. It only changes the concentration of B.
 E. It shifts the equilibrium towards more products.
Chemistry 106 Fall 2006 Exam 3 Form A

16. In equilibrium expressions, solids and solvents are ignored because they
 A. have the assigned value of zero. B. are not necessary for the reaction
 C. are treated with different rate constants. D. do not change concentration.
 E. have constant values, K_s and K_l.

17. The SO$_2$ in the exhaust gas from coal burning power plants may be removed by the reaction:

 \[
 \text{CaO(s) + SO}_2(\text{g}) \rightleftharpoons \text{CaSO}_3(\text{s})
 \]

 The equilibrium expression for this scrubbing reaction of calcium oxide and sulfur dioxide to
 make calcium sulfite is
 A. $K_c = [\text{CaO}][\text{SO}_2]$.
 B. $K_c = \frac{[\text{CaSO}_3]}{[\text{SO}_2]{\text{[CaO]}}}.$
 C. $K_c = 1/[\text{SO}_2]$.
 D. $K_c = [\text{CO}_2]$.
 E. $K_c = \frac{[\text{CaSO}_3]}{[\text{SO}_2][\text{CaO}]}.$

18. The expression for K_a where HA represents a weak acid is:
 A. $[\text{HA}]/([\text{H}^+]+[\text{A}^-])$
 B. $([\text{H}^+]+[\text{A}^-])/[\text{HA}]$
 C. $[\text{H}_2\text{A}^+][\text{OH}^-]/[\text{HA}]$
 D. $[\text{HA}]/([\text{H}^+][\text{A}^-])$
 E. $([\text{H}^+][\text{A}^-])/[\text{HA}]$

19. The degree of ionization of a weak acid is
 A. between 10 and 100%.
 B. 100%.
 C. between 1 and 10%.
 D. dependent on the total concentration of the acid.
 E. none of the above

20. The equilibrium constant K_b describes the following reaction for a weak base, B, in aqueous
 solution:
 A. $B + 2OH^- \rightleftharpoons BH^+ + H_2O$
 B. $B + OH^- \rightleftharpoons BH^- + O^{2-}$
 C. $B + H^+ \rightleftharpoons BH^+$
 D. $B + H_3O^+ \rightleftharpoons BH^+ + H_2O$
 E. $B + H_2O \rightleftharpoons BH^+ + OH^-$
21. What is the pH of a 0.010 M solution of acetic acid, given that the weak acids K_a is 1.8×10^{-5}?
 A. 4.74 B. 3.37 C. 2.74 D. 2.00

22. What is the concentration of the molecular form of HF in a 1.00 M solution of HF given that the K_a of the weak acid is 6.8×10^{-4}?
 A. 0.97 M B. 6.8×10^{-4} M C. 1.59 M D. 1.00 M E. 2.6×10^{-2} M

23. Which of these is a strong acid that ionizes to make a weak acid?
 A. H_2SO_3 B. HCl C. HNO_3 D. H_2SO_4 E. H_3PO_4

24. The weaker the acid,
 A. the weaker its conjugate base.
 B. the less concentrated the acid.
 C. the more concentrated the conjugate base.
 D. the stronger its conjugate base.
 E. none of the above

25. A solution with pH of 9.50 has a pOH of
 A. 9.50. B. 4.50. C. 23.50. D. 1.50 E. 0.50.

26. A Lewis base is
 A. an electron pair acceptor
 B. a proton donor
 C. an electron pair donor
 D. a proton acceptor
 E. none of the above

27. An acidic solution has
 A. a pOH more than 7. B. a pH less than 7.
 C. more H^+ than OH^-.
 D. all the above.

28. Lead(II) chloride salt is not very soluble in water. How does the solubility of lead chloride change as sodium chloride is added to the water in contact with solid lead(II) chloride?
 A. Sodium chloride increases the solubility of lead(II) chloride.
 B. Sodium chloride has no effect—it is an inert electrolyte.
 C. It depends on how vigorously you stir the solution.
 D. Sodium chloride has no effect—lead(II) chloride is insoluble in water and also insoluble in salt water.
 E. Sodium chloride decreases the solubility of lead(II) chloride.
29. Which of the following is \textbf{NOT} a buffer system? A solution containing roughly equal concentrations of
\begin{itemize}
 \item A. fluoride ion and hydrofluoric acid.
 \item B. phosphate ion and monophosphate ion.
 \item C. chloride ion and hydrochloric acid.
 \item D. carbonate ion and bicarbonate ion.
 \item E. they are all buffers
\end{itemize}

30. Compounds that are reactive as both an acid and base are called:
\begin{itemize}
 \item A. amphibious
 \item B. amphoteric
 \item C. bacidic
 \item D. androgynous
 \item E. none of the above
\end{itemize}

31. A solution of sulfuric acid (25.00 mL) was titrated to completion (all protons reacted) with 34.55 mL of 0.1020 M sodium hydroxide. What was the concentration of the sulfuric acid?
\begin{itemize}
 \item A. 0.2819 M
 \item B. 0.1410 M
 \item C. 0.07048 M
 \item D. 0.0353 M
 \item E. 1.418 M
\end{itemize}

32. A buffer system is set up with $[HA] = 2[A^-]$. If $pK_a = 5.5$, what is the pH of the buffer?
\begin{itemize}
 \item A. 5.8
 \item B. 7.0
 \item C. 5.2
 \item D. 3.5
 \item E. 7.5
\end{itemize}

33. What is the pH of a 0.15 M solution of ammonium bromide? The K_b value of ammonia is 1.8×10^{-5}.
\begin{itemize}
 \item A. 11.22
 \item B. 7.00
 \item C. 5.04
 \item D. 2.78
 \item E. 9.50
\end{itemize}

34. Which is \textbf{NOT} related to K_w
\begin{itemize}
 \item A. $2 \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^-$
 \item B. 1.0×10^{-14} at 25º C.
 \item C. $[\text{H}_3\text{O}^+] \ [\text{OH}^-]$.
 \item D. $[\text{H}^+] \ [\text{A}^-]/[\text{HA}]$
 \item E. $[\text{H}^+] \ [\text{OH}^-]$
\end{itemize}
Answer Key for Test “Exam 3 F06 Form A.mte”, 11/4/07

<table>
<thead>
<tr>
<th>No. in Q-Bank</th>
<th>No. on Test</th>
<th>Correct Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 19</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>15 13</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>15 16</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>15 111</td>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>15 6</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>15 113</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>15 112</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>15 114</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>15 31</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>15 116</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>15 74</td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>15 63</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>15 70</td>
<td>13</td>
<td>D</td>
</tr>
<tr>
<td>15 51</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>15 115</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>15 82</td>
<td>16</td>
<td>D</td>
</tr>
<tr>
<td>15 83</td>
<td>17</td>
<td>C</td>
</tr>
<tr>
<td>16 111</td>
<td>18</td>
<td>E</td>
</tr>
<tr>
<td>16 18</td>
<td>19</td>
<td>D</td>
</tr>
<tr>
<td>16 27</td>
<td>20</td>
<td>E</td>
</tr>
<tr>
<td>16 11</td>
<td>21</td>
<td>B</td>
</tr>
<tr>
<td>16 12</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>16 15</td>
<td>23</td>
<td>D</td>
</tr>
<tr>
<td>16 112</td>
<td>24</td>
<td>D</td>
</tr>
<tr>
<td>16 46</td>
<td>25</td>
<td>B</td>
</tr>
<tr>
<td>16 113</td>
<td>26</td>
<td>C</td>
</tr>
<tr>
<td>16 49</td>
<td>27</td>
<td>D</td>
</tr>
<tr>
<td>16 94</td>
<td>28</td>
<td>E</td>
</tr>
<tr>
<td>16 64</td>
<td>29</td>
<td>C</td>
</tr>
<tr>
<td>16 102</td>
<td>30</td>
<td>B</td>
</tr>
<tr>
<td>16 90</td>
<td>31</td>
<td>C</td>
</tr>
<tr>
<td>16 71</td>
<td>32</td>
<td>C</td>
</tr>
<tr>
<td>16 57</td>
<td>33</td>
<td>C</td>
</tr>
<tr>
<td>16 114</td>
<td>34</td>
<td>D</td>
</tr>
</tbody>
</table>