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Day By Day Notes for MATH 386/586
Spring 2012
Day 1
Introduction / Math 301 review.

This course is about analyzing averages from more than one sample of data, and about how
to design experiments to give meaningful results. Today I want to review some of the key
theoretical results we will need to accomplish our goals. Often in class we will use
spreadsheets and MINITAB files to analyze data and demonstrate the techniques. 1 will
save these spreadsheets and analyses on TitanFiles in a Math386 folder so that you all have
access to our work.

I will begin the review with Random Variables. The easiest examples of random variables
are counting heads on coins and totaling the sums on dice. Basically, a random variable is
an assignment of a value to each of the elements of a sample space. We are usually
interested in how random variables are distributed, e.g. what the possible and probable
number of heads in n coin tosses are. A complete enumeration of the values of a random
variable and their associated probabilities constitutes a probability distribution function
(pdf) or a probability mass function (pmf). In the case of a continuous random variable, the
pdf will likely be given in equation form (e.g. the normal density curve). In the case of a
discrete random variable, we may have an equation (e.g. the binomial curve) or we may just
have a table of values describing the distribution.

Given a pdf, either from a continuous or a discrete random variable, we usually need to
know the typical value, and how much the probabilities are spread out. Two keys
calculations from a distribution are the Expected Value and Variance. The Expected Value
(EV) is really an average or a mean, while the Variance (Var) is very similar to the mean of
the squared deviations from average. High variance indicates a distribution that has quite
disparate values while a low variance indicates a distribution that has homogenous values.
For the common distributions (uniform, binomial, normal, gamma, among others) we
calculate the EV and Var theoretically, using either sums (discrete pdf’s) or integrals
(continuous pdf’s). The chief distributions we will need in this course are the normal, the
%*, the ¢, and the F (see below).

To understand distributions and expectation, simulation can help us. If we generate a series
of observations, and calculate the mean and variance of our resulting list, we should find
results that agree with our EV and Var calculations, respectively. On the TI-84, try this:
seq( rand, X, 1, 100) -> L1 . List L1 should now have 100 entries, each a random number
between 0 and 1. The theoretical mean and variance of the Uniform( O, 1) distribution are
1/2 and 1/12, so the mean of L1 should be close to .5 and the standard deviation of L1 should
be close to \/(1/ 12). (After we discuss the Central Limit Theorem below, we should be able
to predict just how close these estimates should be to the theoretical values!)

The next step in our progression toward ANOVA and experimental design is the concept of
a sampling distribution. Revisiting our simulation in the previous paragraph, the mean we
calculated can be thought of as one repetition of an experiment. This experiment has a




sample size of 100 and represents taking 100 observations from a continuous uniform
distribution. By repeating this simulation again and again, we can create a new simulation
of sample averages. The way this set of values is distributed is what we call the sampling
distribution of the sample average. While most of our interest in statistical analyses will be
about sample averages, we could have considered any statistic, such as the sample variance.
In this case, we would calculate the sample variance of our 100 observations, and repeat
that process again and again. The distribution of the resulting sample variances would
represent the sampling distribution of the sample variance. In general, finding the
theoretical distribution of a statistic can be a daunting task. In fact, in some cases the pdf’s
involved are so complicated that the formulas are intractable. However, the next result will
save us in many cases, by giving us an approximate solution to the difficult theoretical
result.

Regardless of what distribution data comes in, if we take a large enough sample, the
distribution of the sample average should be close to a normal curve. This famous result is
the Central Limit Theorem (CLT). If a distribution is close to the normal curve, then this
approximation is very good even for small samples. If the distribution is skewed or very
non-normal, we need larger samples before the approximation is adequate. Unfortunately,
there is no magic number that will satisfy all distributions as a standard for “large”. We
may need to resort to some sort of simulation (e.g. bootstrapping) before we can be satisfied
that our n is large enough to invoke the CLT. To use the CLT, we need to know the
standard deviation of the statistic we are working with, which in most cases is the sample

o . .
average, where O- = T This formula says that sample averages are better estimates of
n

the population average than any individual measurement.

To demonstrate the CLT, try this simulation: seq( mean( randInt( 1, 25, 50) ), X, 1, 100) -> L1.
This time, we are generating 100 repetitions of samples of size 50 from a discrete uniform
distribution (picking a number between 1 and 25). The theoretical mean and variance for
this discrete uniform distribution are 12.5 and 48, respectively. Therefore, the standard
deviation of the mean for a sample of 50 items from this distribution should be VA8V50 =
0.98. This L1 then should have a mean of 12.5 and a standard deviation of around 0.98.
(Caution: this command will take a few minutes to complete. After all, we are generating
5,000 observations!) Make sure you look at a graph of this distribution in addition to
summary statistics. You should see data that is approximately normal, despite the original
distribution being uniform!

From the normal distribution, we can derive other useful distributions. The standard
normal distribution squared produces the ¥ distribution with 1 degree of freedom. If two
independent * random variables are added together, the result is also a 7> distribution, and
the degrees of freedom are the sum of the two degrees of freedom. The % distribution is
most useful in describing the distribution of the sample variance, when sampling from the
normal distribution.

When we do not know o, we estimate it using the sample standard deviation, and the
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resulting z-type statistic, ¢ = , has what is known as the ¢ distribution with n — 1




Goals:

Skills:

Reading:

Activity:

degrees of freedom. The formal definition of a ¢ distribution is 7T = ﬁ, where Z is a
standard normal and W is an independent % distribution with df degrees of freedom. The
last major distribution is the F distribution. The formal definition of an F distribution is
W
df1
degrees of freedom. Our major use of the F distribution is the ratio of two sums of squares,
such as the numerators of variance.

/ d]I:2’ where W and Y are two independent 5’ distributions with dfI and df2

We have two main applications of these theoretical results: confidence intervals, and
hypothesis tests. In hypothesis intervals, we “guess” the value of some population fact, like
an average, using a range of values based on a sample statistic. Examples of questions we
can answer with confidence intervals are “What percentage of m&m’s are blue?” and
“What is the mean credit load for UWO students?” The usual method of forming a
confidence interval is to use a reasonable sample statistic as a point estimate of the
population parameter, and then add and subtract a “margin of error” from this value,
producing an interval of “reasonable guesses” for the parameter. For example, for

estimating u, the population mean, we use X =t4/s/n. The value of r we use is based on

our confidence coefficient, which represents the chance of our method producing an
interval that contains the true unknown population parameter.

Our other inference procedure is hypothesis tests. In these procedures, we have some claim
about a parameter that we want to test by collecting some data and calculating an
appropriate test statistic. We use a proof by contradiction, where we assume the opposite of
our claim is true, and then use the collected data to either support that claim or reject it.
Examples of questions we can answer with hypothesis testing are “Is this die fair?”, “Is the
dairy cheating us by under filling our milk jugs?”, and “Do these two populations have the
same mean?” The usual method is to use our test statistic and calculate the chance of
exceeding this value. This “P-value” represents the chance of making a Type I error, which
is rejecting a true null hypothesis. If the P-value is small enough, we conclude the null
hypothesis is in error, and therefore reject it in favor of the alternate, which is usually that
the means in several populations are different.

Recall basic statistics and results from your introductory statistics course.

Recall the prerequisites. Remember all those things you learned in your introductory
statistics course. This includes Expected Values, Variances, sampling distributions, normal
curves, t distributions, confidence intervals, and hypothesis tests. Of course we will
examine individual examples of these techniques as we encounter them in the days to come.

Chapter 15. (The reading assignments will always refer to the next day’s reading, so you
can prepare ahead of the lecture.)

Day 2

Overview of Experimental Design. Examples from Hicks.
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Completely Randomized Design: In a completely randomized design, we collect samples
of data from several populations to test whether the population means are equal or not.
Samples do not have to be of equal size, but we do make assumptions about the variances
being equal. To assign treatments to subjects, we essentially put all the names in a hat and
draw them out one by one. Hicks 3.6 p 62.

Randomized Complete Block Design: In a block design, the experiment is essentially
repeated within each block of subjects. Blocks are chosen so that subjects within a block
are as alike as possible, and subjects between blocks are possibly quite different. The
reasoning is that experimental error will be small within blocks and large between blocks,
so that any within-block differences in means should be attributable to treatment
differences, and not subject differences. One drawback of this type of design is that block
size must be a multiple of the number of treatments, and all blocks must be of equal size.
Hicks 4.1 p 81

Factorial Designs: In factorial designs, two or more factors are under study at once. Each
level of each factor appears in a treatment combination with each level of each other factor.
Advantages of factorial designs are efficiency: many factors can be measured at the same
time; possible interactions between factors can also be studied. Disadvantages include the
large number of subjects needed to fill out the design. Hicks 5.1 p 105

Nested Designs: In some designs, each of the levels of one factor is unique to one
particular level of another factor. On the surface, these appear to be factorial designs, but
are correctly analyzed as nested designs. Hicks 11.1 p 245

Repeated Measures Designs: Sometimes repeated measurements are taken on subjects,
such as a before-treatment and after-treatment situation. These repeated measures
situations may involve several factors, or several levels of randomization. KNNL 27.11 p
1167

Incomplete Block Designs: One of the drawbacks mentioned earlier in RCB designs was
the need for the block sizes to be exactly equal to the number of treatments, or a multiple
thereof. Sometimes structural constraints make full blocks impossible. In these cases,
analyses may still be possible on smaller, incomplete blocks. Hicks 16.9 p 365

Fractional Factorial Designs: Just as incomplete block designs may be impossible to
perform due to sample size constraints, full factorial designs may be impractically large. In
these cases, we may be able to design a small fraction of the full factorial experiment, and
still make valuable conclusions. Hicks 15.12 p 315

Differentiate between various experimental designs.

Recognize various designs. Know the structure of these seven designs. While we will
work out the details of these various designs as the course proceeds, you should know from
the beginning about the various differences in the way data is gathered for these studies.

Assign treatments. By knowing the structure of the designs we will study, you should also
know how to randomize treatments to subjects. In the case of a completely randomized
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design, it is basically a “names in a hat” situation. For a more complicated design, like a
nested design, we have to understand which names go in an appropriately sized hat.

Sections 16.1 to 16 .4.
Day 3

Single Factor ANOVA. Extend from two-sample Math 301 type problem to the three-or-
more-sample ANOVA problem. Lecture on #-tests and #-distributions.

In Math 301 you might see the two-sample #-tests and intervals. If not, I will fill in the
details for you here. In this setting, we have two independent samples taken from separate
populations, and we want to test the hypothesis that the two means are equal. If the data is

distributed normally, then from Math 301 we know the individual sample means also have
2

C . . . . (o} .
normal distributions with mean w and variance —. The typical procedure to test
n

H,:uw =u, versus H, :u = u, is to work with the difference in the means as a test statistic.

2 2
The Expected Value of x, = X, — X, is u, — u, and the variance is 9 4+ 9L Because we do
n
not know the population variances and we estimate them with sample variances, the
resulting statistic is a ¢ statistic and not a z statistic. In the one-sample case, the
standardized statistic has a ¢ distribution. However, in the two-sample case, this is not the
case in general. If we are willing to assume that the two variances are equal, then the
resulting statistic (called the pooled ¢ statistic) does in fact have a ¢ distribution. Pooling is
not common nowadays as the computer intensive Welch’s test from 1947
http://en.wikipedia.org/wiki/Welch%27s_t_test gives an acceptable approximation and has
been programmed into most computer packages and calculators.

The approach we will take in ANOVA actually mirrors the pooled test procedures, so we
will be interested in verifying the assumption of equal variances. The pooled ¢ statistic has

_ 2 2
. X —X n-Ds +(n,-1s
the following form: ¢ =— "1 "2  where s>, = (= Dsi + (1, =D In class,
pooled [1 1 pooled + _ 2
Spooled nT + Z n1 l’l2

we will focus on this pooled variance formula, as it holds the key to how to extend our
work to more than two samples.

The model we will use in ANOVA is Y, =y, +¢;. The € terms are assumed to have a

normal distribution with mean zero and variance o, and the u’s are population means.
Notice we are simply saying that each sample is coming from a population and the data
should be normally distributed around the mean. To fit this model, we will look at some
calculus results (pages 687 and 689 in the text). Essentially, all we will do is use the
sample averages to estimate the population averages.

Observe that ANOVA is an extension of the two-sample pooled #-test. Define the cell
means model.
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Recognize how the #-test extends to two samples. Understand that the two-sample -
statistic has a ¢ distribution only if we assume equal variances. Otherwise it is only an
approximation, with likely fractional degrees of freedom.

Know the single factor ANOVA model. Understand the terms and assumptions in the
model: ¥, = u, +¢;.

Section 16.5.
Day 4

Extend pooled variance ideas to the ANOVA equivalent: SSE. Introduce dot notation.
Partition the sums of squares.

By pooling the variances for more than two samples, we can extend our results so far to the
ANOVA situation. The important observation is that the numerator of this pooled variance
is a sum of squared errors. We want to show that the variance of the observations without
worrying about which sample they come from can be “broken down” into components that
reflect the pooled variance and that reflect the effect of the treatments. This partitioning of
the variance, or rather the sums of squares, is the basis for the ANOVA table included in all
our analyses.

Before we can efficiently work with the various averages we will encounter, it is helpful to
introduce a new notation. If we replace a subscript with a ¢, we can indicate that a sum has

ij°

been taken over the range of that subscript’s values. Thus, Y, = EYU., Y, = EY and.
j=1 i=1

Y. = EEYU = ElYl If we add an overbar, we indicate an average, dividing by the

i=1 j=1
S8k
appropriate sample size. So, ¥, =~ and Y,, = =~ At first this notation may seem
n.
j S,
i=1

cumbersome, but with practice you will see its utility and effectiveness.

Using our new dot notation, we now want to show that the numerator of the pooled
variance is the SSE given on page 691. We will also look at the breakdown of SSTO on
page 692. Along with being able to break down the sums of squares, we are also able to
divide up the degrees of freedom associated with each sum of squares. Because we know
that deviations from average always add up to zero, we effectively “lose” one piece of
information; i.e. if we know all but one of the errors or residuals, we know the last one.
This is the reasoning and justification for calling this fact a “degree of freedom”.

We summarize our breakdown of the sums of squares and the degrees of freedom in a chart
known as an ANOVA table. In this table, we have columns for the sums of squares, the
degrees of freedom, the Mean Squares (MS), and test statistics and p-values, as appropriate.
The MS’s are simply the ratio of the SS to their df, and in the language of our work on Day
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1 represent random variables with 7* distributions. The ratio of two appropriate MS’s is
then an F distribution. Deciding which null hypothesis each of these F statistics tests is one
of our challenges in the upcoming material.

Model estimation. Dot notation algebra. ANOVA table facts.

Use dot notation. To simplify our algebra (but sometimes requiring closer attention to
detail) we use dots (¢) in place of subscripts to indicate a summation. We also add overbars
to indicate averages.

Decompose sums of squares. Understand algebraically why the sums of squares
decompose (add up with no cross products). This understanding hinges on the fact that
deviations from average add to zero, when summed over appropriate subscripts. We also
observe that the degrees of freedom similarly decompose.

Sections 16.6 and 16.7.
Day 5
F-Test. Simulation. Alternative model.

One of the theoretical features we will use concerning ANOVA tables is the Expected
Mean Squares. The derivation of these expectations is beyond the scope of our course (you
need Math 401 knowledge) but will we examine some algorithms designed to allow us to
make use of the results. One basic fact that we can prove at this point is the unbiasedness
of MSE as an estimator for . I will show you a proof of this today, which elaborates on a
comment on page 696. The authors, on pages 697 and 698, detail the derivation for
E(MSTR). At this point, we are more interested in the form of the result than the details of
the derivation.

Focusing on E(MSTR), we see that when the means of the populations are all equal, the
E(MSTR) = E(MSE). This forms the justification of our F-test. The null hypothesis then is
H,:uw =u, =...=u, and the alternate hypothesis is that not all means are equal. Note that
this alternate hypothesis is difficult to specify exactly; there are many combinations of
population means that satisfy the alternate hypothesis, but only one way to satisfy the null
hypothesis. This multiplicity of alternate hypothesis values makes power calculations quite
complicated. We will explore power on Day 6.

At this point, it is not a bad idea to conduct a simulation to see just how ANOVA works. I
will generate data using either MINITAB or Excel, and we will see the various theoretical
facts at work. In particular, we can see how MSE, MSTR, and F are distributed.

So far we have been considering the cell means model, as our parameters have been the
means of the individual populations. An alternative but equivalent model is the factor
effects model. (This model will more closely parallel the regression model that you saw in
Math 385, for those who took that course.) The factor effects model is needed for our more
complicated future models, so it’s important for us to understand it early on. The key fact
is that the models are equivalent; they lead to the same fitted values, and the same
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hypothesis tests. The only difference in the two approaches is how we phrase the
parameters.

Derive F-test for equal means.

Perform ANOVA tests. Know the details of the F-test from the ANOVA table. in
particular, you should understand the null hypothesis being tested, and that the alternate
hypothesis is quite complicated.

Understand the Factor Effects model. The cell means model uses a population mean for
each individual population. The factor effects model uses a deviation from average for
each population. Fitted values and hypothesis tests are equivalent between the two models,
so which one we use will be a matter of convenience in interpretations.

Sections 16.10 and 16.11.
Day 6
Details of Calculation. Power.

Today we will use MINITAB to calculate an ANOVA, including the F-test decision. In
addition, I want to use our simulation from Day 5 to explore power and Type II errors. The
theoretical work is complicated. Most practitioners use prepared tables instead of
calculations from scratch. We will take a look at both approaches.

The complication comes when we examine the distribution of the test statistic when the
alternate hypothesis is true instead of the null hypothesis. In this situation, a new
distribution results, called the non-central F distribution. Because of the complexity of the
alternate hypothesis, this distribution is quite complicated, and using it can be a burden.

Calculate an ANOVA. Understand Type II error calculations.

Know ANOVA formulas. While we may often use a computer to perform ANOVA, we
should realize the formulas are simple enough to understand and use without powerful
computing. For example, just knowing means and standard deviations of the various sub-
samples is sufficient to produce the entire ANOVA table.

Power calculations. In ANOVA, the distribution under the alternate hypothesis is a
complicated non-central F distribution. We must use tabulated values to calculate tail
probabilities. Power calculations, and sample size determination are typical uses of this
distribution.

Sections 17.1 to 17.3
Day 7

Contrasts and Linear Combinations. Homework 1 due today.
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Once we have rejected a null hypothesis of equal means, we usually want to know which
means differ from the others. We accomplish this by examining various differences of
means, or linear combinations of means. If the weights in a linear combination sum to zero,
we call that linear combination a contrast. In all cases, our rules for means and variances
help us develop the test needed.

i

Specifically, if L= Ec .u; then we estimate L using appropriate averages: L= ECY . The

2 2
. . . o c; .
mean and variance of this estimate are L and ch— = OZE—’, respectively. If we use

1 14 1 l

MSE as our estimate for o°, we have the basis for # intervals and tests.

The typical contrasts one examines are often pairwise comparisons between the sample
r
means. With r treatments, there are (2) pairwise comparisons between sample means.

There may be other comparisons that make sense, such as when one of the treatments is
control group, and the researcher wants to compare each treatment level with the control.

Introduce contrasts and linear combinations.

Expected value and variance formulas. Recall the Expected Value and Variance
formulas. To calculate confidence intervals and tests for various combinations of the factor
means, we need to rely on our expected value and variance formulas. The key result is that
means and variances for sums are additive for independent samples.

Recognize contrasts and know their means and variances. Typical contrasts involve
comparing the average of several treatment means to a control mean, or grouping several
treatment means together.

Sections 17.4 and 17.5.
Day 8
Multiple comparisons I.

When we make multiple tests or confidence intervals, we need to consider the chance of all
such statements being simultaneously true. The individual success rates will not be
accurate if many tests are made. For example, if 100 hypothesis tests are conducted, and if
the null hypothesis is true in every case, we would expect 5 of the confidence intervals to be
incorrect, just by chance. And yet we would not want to tell a client that we’re pretty sure
five of the 100 statements we are making are not correct, but we don’t know which five.
Instead, we need a procedure that ensures that there is a 95% chance that all of our 100
statements are simultaneously true. This issue is called multiple comparisons.

The first procedure we will look at is the Tukey procedure. This procedure is only
appropriate when the contrasts we are interested in are the pairwise comparison of sample
means. The procedure is based on the distribution of the difference between the largest and
smallest values taken from a normal distribution. Table B9 is based on this Studentized
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Range distribution. Essentially we construct tests and confidence intervals using formulas
from Day 7 for our standard errors, but with a different multiplier in place of ¢.

Introduce the need for multiple comparisons. Tukey’s Procedure.

Understand the issue of multiple comparisons. When we make multiple tests or
confidence intervals, we do not have faith that all of our statements are true with the same
confidence we have that a single statement is true. To adjust for this issue, we will use
techniques that account for multiple statements.

Know Tukey’s Procedure. Tukey’s procedure may only be used when we are comparing

r
means 1n a pairwise manncer. There are (2) poss1ble pairwise comparisons.

Sections 17.6 and 17.7.
Day 9
Multiple comparisons II.

One significant drawback to Tukey’s procedure is that the only contrasts or linear
combinations we can discuss are the pairwise comparisons between treatment means.
Today’s procedures both allow us to test other contrasts and combinations. Bonferroni’s is
by far the simplest multiple comparison procedure to use, but Scheffé’s is the most flexible.

Scheffé’s procedure is used when we are making a large number of tests or statements. The
idea is that the overall F-test will indicate if there is any contrast that is significant. If the
F-test is not significant, then no contrast will be found to be significant. Therefore, this
procedure allows us to data snoop, that is to look through all possible contrasts and find the
interesting or significant ones. However, it is often the case that the contrasts of interest do
not include the ones that happen to be causing the F-test to be significant. Therefore the
significance levels or confidence levels tend to be conservative, and we can relax the levels
when using Scheffé’s procedure.

Bonferroni’s procedure is based on the Bonferroni inequality:

P(Z1 N 22) =1- P(Zl) - P(Zz). Essentially, we will divvy up our alpha level into however
many statements or tests we are making. Of course, the larger the confidence level, the
wider the confidence interval, so the effect of using Bonferroni’s procedure is that the
intervals get wider as more statements are made. Therefore, we should only use
Bonferroni’s procedure if we have a small number of statements of interest. If we have a
large number of statements, either Tukey’s procedure (for the case of pairwise
comparisons) or Scheffé’s procedure should yield narrower intervals. It is completely
appropriate to calculate all three multipliers (if applicable) and use the smallest one.

We can understand these procedures a little better if you expand on our simulation from
Day 5. I will add several confidence intervals and hypothesis tests to each sample, and we
will keep track of the success rates involved.
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Scheffé’s Procedure, Bonferroni’s Procedure

Know Scheffé’s Procedure. Scheffé’s procedure involves a “gateway” F-test; then any
contrasts or means comparisons are valid. Scheffé’s procedure is most efficient when we
are making a large number of statements or tests, or when we do not know ahead of time
what contrasts might be of interest (data snooping is allowed).

Know Bonferroni Procedure. The Bonferroni procedure is best suited for a small number
of pre-selected statements or tests. This procedure divides up the significance level among
all the statements or tests desired. Then by the Bonferroni inequality the family confidence
coefficient or significance level is controlled.

Sections 18.1 to 18.2.
Day 10
Diagnostics. Hicks p 46.

We have assumptions about the error terms in the model that need to be checked before we
can certify that our model is an adequate description of our data. In particular, we assume
the error terms follow a normal distribution, with constant variance, independent of other
error terms.

To test whether the data follow the normal distribution, we can use Table B.6. We
calculate the correlation of the residuals to their expected value under normality (the NSCO
command in MINITAB) and refer to the entry in Table B.6. If the correlation is greater
than the tabled value, we conclude the assumption of normality is acceptable.

To test for independence of the error terms, we can plot the residuals against time, or some
other logical sequence of measurements, such as a geographic sequence. If a trend or
pattern is apparent in these plots, we have an indication that the errors are not independent,
at least for that variable or sequence.

To test for constancy of variance (homoskedasticity) we can use either the Hartley test or
the Brown-Forsythe test. The Hartley test is only appropriate for equal size samples, while
the Brown-Forsythe test is always appropriate.

The Hartley test compares the largest sample variance to the smallest sample variance in a
ratio. If this ratio is large, we have evidence that the variances are not equal. Table B.10
contains the percentiles of the Hartley test statistic.

The Brown-Forsythe test examines the absolute size of the residuals around the sample
medians. If the error variances are constant, these absolute deviations should all be equal.
The appropriate test is then an ANOVA on the absolute deviations.

Residual plots. Hartley test. Brown-Forsythe test.
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Know how residual plots are used to assess model adequacy. The residuals should have
the same distribution as the error terms, so making plots of them and analyzing them will
give us some clues as to whether the model we’ve chosen is adequate. Specifically, the use
of the normal probability plot will let us know about the normality assumption, and side-by-
side box plots will help assess the equal variance hypothesis.

Know how to use the Hartley test for equal variances. One simple formal test for equal
variances is the Hartley test. There is a special table (B.10) of the percentiles from this
distribution in our text. The test statistic is the ratio of the largest sample variance to the
smallest sample variance. Clearly, large values are evidence of differing variances.

Know how to use the Brown-Forsythe test for equal variances. Samples with equal
variances will produce residuals that are essentially all of the same size. The Brown-
Forsythe test statistic measures whether the absolute deviations of the deviations from the
medians are equal.

Sections 18.5 to 18.7.

Day 11
Remedial measures.
Transformations. Nonparametric test.

Often we can transform our response variable, Y, to yield a model that more closely
matches our assumptions on the error terms. Based on Taylor’s series expansions for the
variance formulas, we can use the following transformations for common situations where
the variances are related to the means for the various populations. Variance proportional to
the mean: Use square root. Standard deviation proportional to the mean: Use logarithm.
Standard deviation proportional to the mean squared: Use reciprocal. Response is a
proportion: Use arcsin. Pages 789 and 790 in our text have the details of the
transformations.

Another approach to transformations is to use the Box-Cox procedure. After an appropriate
transformation (equation 3.36) we use different powers of the response variable to find the
transformation that yields the smallest SSE when fitting an ANOVA. I have a spreadsheet
on TitanFiles that you can use as a template for this procedure.

If we are unable to correct the model’s deficiencies with transformations, another option
available to us is to use a non-parametric procedure. These procedures involve using
techniques that are not dependent on the distribution of the error terms being normal.
Often, non-parametric techniques will use ranks in place of raw data. Then the ranks are
analyzed instead of the original data values. This is the basic idea in the Kruskal-Wallis
test, which is equivalent to the rank F-test statistic.

Know which transformations may help with unequal variances. When the population
variances or standard deviations are proportional to the population means, some common
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transformations are square root, logarithm, and the reciprocal. The more involved Box-Cox
transformation may help too, but could also be more trouble than it is worth, considering
the resulting power may not be very interpretable, i.e. Yi](.) “+ as opposed to square root.

Know how the Kruskal-Wallis test works. If we replace the data with the ranks (from
one to n, the total sample size) before doing ANOVA, we essentially have the Kruskal-
Wallis test. This test is most useful when the normality assumption doesn’t hold.

Chapters 15 to 18.
Day 12
Review. Homework 2 due today.
Sections 19.1 to 19.3.
Day 13
Exam 1.
Know everything about one-way ANOVA.
Day 14
Two factor ANOVA with replicates and equal sample sizes.

Today we begin ANOVA with more than one factor present. Some of the calculations we
make will be identical to one-way ANOVA. However, there is a new profoundly different
concept: interaction. The difference between the true cell means and the cell means using
an additive model is our definition of the interaction terms. We will examine situations
today with and without this additive structure.

One common tool used to understand two-factor ANOVA is the Treatment Means plot.
This plot will visually give us information on the existence of interaction. We must be
careful though to remember the idea of variability when analyzing these plots. The text
ignores this issue, so I want to make sure we keep it in mind. The main idea is that if
interaction is not present, the lines in a Treatment Means plot will be parallel. In practice,
however, we will not know the true means, and we will be plotting cell means instead.
These are of course only estimates, and so carry with them a notion of imprecision. By
attaching error bars to our estimates, we can better assess parallelness.

We can analyze our two-factor ANOVA using either a cell means model or a factor effects
model. The cell means model will not, however, account for the additive structure, if
present. We may often prefer the factor effects model then. The estimates we use for the
model components will be quite similar to the one-way ANOVA estimates. The notable
exception is the interaction term.

Model and fit.
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Goals:
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Recognize interaction. With two factors, we have a new term in the model: interaction.
Our examples in class show that we can add an extra term to account for this new idea.
Plots are especially useful for characterizing the nature of the interactions.

Understand the two models; differences and similarities. The cell means model and
factor effects models have different terms (parameters) but yield the same cell estimates
and thus the same ANOVA table. The interpretation is what differs.

State model and fits. Appropriate averages will be our estimators for the additive terms in
the model. Pooled variance will be our estimate of variance, once again.

Sections 19.4 to 19.7.

Day 15
Two-factor ANOVA with replicates.
ANOVA and test.

Body

Be able to decompose the SSTR into its components. Balance is important to the
orthogonal decomposition of the sums of squares.

Know F-tests for 2-way ANOVA. With the addition of an interaction term, we have a
new test we can perform, and which should be done before we examine main effects.

Sections 19.8 to 19.10.
Day 16
Two factor multiple comparisons.
Understand the issues of multiple comparisons in two-factor studies.

Body

Tukey’s method. Because Tukey’s method deals with the distribution of means in
multiple samples, there is no way for us to deal with the two factors at once. What is
usually done then is to perform two Tukey’s tests and combine the results using a
Bonferroni approach. For example, if we desire a family a = 0.05 level, we can use an o =
0.025 level for each of the two factors, and we can then compare all possible mean
differences separately for each factor.

Scheffé’s method. To make statements about both factors, we can modify the Scheffé’s
method by using an appropriate numerator degrees of freedom; then any statements we
would like to make are valid. On the other hand, the Bonferroni approach for Tukey’s an
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Activity:
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also be used here. As was the case for the one-way ANOVA, it is acceptable to perform
“data-snooping” with this technique.

Bonferroni’s method. Everything we learned from one-factor ANOVA is still true for
two-factor ANOVA. Specifically, if we make g statements, we can be jointly confident of
the truth of our statements by dividing up the alpha level into g pieces, usually equal, but
not necessarily equal. This technique allows us to make statements about either factor, or
about interaction terms, as long as the statements, tests, contrasts, etc are specified
beforehand.

Chapter 20

Day 17
Two factor ANOVA with no replicates.
Tukey test for additivity.

Body

Interaction is used as error when there are no within-cell replicates. When the sample
size in each cell is only 1, we have zero degrees of freedom left to estimate the population
variance o”. Our only recourse is to then assume that no interaction exists and use that
variation as an estimate for o”.

Tukey’s one degree of freedom test for additivity can be used to detect interaction. If
we model the interaction as a multiplicative effect, then one degree of freedom can be taken
from the error term and used as a test for this sort of interaction. While this will not handle
all sorts of interaction, it is at least something that we can do other than to just assume
interaction is not there.

Sections 21.1 to 21 4.

Day 18
Randomized Complete Blocks (RCB’s). Homework 3 due today.
Randomization.

Body

Understand the definition of RCB’s. In an RCB we assign each treatment to n subjects,
and repeat this arrangement b times. In structure then, the data appear as in Chapter 20 as a
two-way ANOVA without replication. Each block is a separate repetition of the whole
experiment. Blocks are chosen to create more homogenous groups of subjects.

Know how to interpret the ANOVA table. In the ANOVA table, we generally are not
interested interesting for block effects. In fact, blocks are generally chosen specifically
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Reading:
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because we know or suspect that they are contributing to the sums of squares. It may be of
interest though to know if interaction exists, and we can still perform the Tukey’s one
degree of freedom test for additivity.

Know the mechanics of actually assigning treatments to subjects. The simplest way to
assign treatment to experimental unit is to generate a random number (like rand from the
TI-83) for each item in the block. The smallest of these n random numbers gets treatment
1, the next smallest treatment 2, etc.

Sections 21.5 to 21.9.
Day 19
RCB’s continued using MINITAB. Consider empty cells.

Use MINITAB to perform an analysis. Understand the Friedman test, a non-parametric
alternative.

Body

The MINITAB command is still a two-way ANOVA. When there are no replicates, we
can still use two-way ANOVA to perform the calculations.

Know a way to deal with missing data. When a cell is empty, we can use calculus to
estimate a value so that the sums of squares are not unduly influenced by not having data in
that cell.

Know the Friedman test details. This non-parametric test is similar to the Kruskal-Wallis
procedure, but we rank each block separately. Thus we have absolutely no ability to detect
block differences with this procedure.

Sections 23.1 to 23 4.

Day 20
Two factor ANOVA with unequal sample sizes.
Regression approach.

Body

Understand the lack of orthogonality. When the sample sizes are unequal, the sums of
squares for treatments do not decompose into orthogonal components, as in balanced two-
way ANOVA, or with one-way ANOVA. Therefore to do any tests we must use a reduced
model regression approach. Basically we will compare SSE’s from different models.

Know how to use and interpret MINITAB output. The procedure GLM will produce the
output we need. The SSE from the full model is subtracted from the reduced model SSE to
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Reading:

get an adjusted SS. This value is what is reported in MINITAB. Our tests proceed as
usual.

Use Reduced Model Tests to deal with missing cells. When a cell is missing data, so that
the sample size is zero for that cell, we can use the MINITAB command GLM to conduct
our test. No new difficulties result.

Section 23 .5.
Day 21

Two factor ANOVA with unequal sample sizes multiple comparisons. Homework 4 due
today.

Multiple comparison and empty cells.

Body

Apply the multiple comparison techniques to unequal sample sizes. The fitting of the
model uses our standard averaging techniques. The multiple comparison techniques we
have already encountered then are applicable with little modification. It is important,
however, to pay attention to sample sizes and Expected Value and Variance formulas.

Sections 24.1 to 24 4.

Day 22
Multi factor models.
Model and fits.

Body

Realize that no new problems exist when adding additional factors. When we have
three or more factors, we proceed in the same way as before. Sums of squares are
calculated based on orthogonality in the case of balanced designs, and using GLM in the
case of unbalanced designs.

Understand that the new higher order interactions are very difficult to interpret. With
three factors, we have three main effects, three two-way interactions, and one three-way
interaction. With four factors, we have 4 main effects, 6 2-way interactions, 4 3-way
interactions, and a 4-way interaction. Due to the complicated nature of these interactions,
most analysts will opt to assume they do not exist; this is analogous to using a model with
fewer terms to avoid “overfitting” the model.

Sections 24.5 to 24.7.
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Day 23
Multi factor tests continued.
Model and fits.
Body
Skill. Description
Sections 25.1 to 25.3.
Day 24

Random models.
Explore the random models, including the MINITAB outputs.

Body

Identify the Random Model. Instead of adding terms that are constants (parameters) the
random model consists of terms that have random distributions. The analysis proceeds as
usual, but the EMS terms differ.

Understand the MINITAB displays. The analysis of random models is very similar to
fixed models, but there are a few differences we need to recognize. Specifically, the way
we estimate variances changes.

Sections 25.4 to 25.7.
Day 25
Mixed models.
See how mixing random and fixed effects changes models.

Body

Know the details of the interactions and fixed terms in a mixed model. When we have
both fixed and random terms in a model, some thought must be put into the assumptions of
the model. For example, which terms have a variance term instead of a sum of parameters
squared in the EMS terms? The tests we perform to test the various null hypotheses will
vary according to which terms are random; the EMS column is our guide to these tests.

Chapters 19 to 21 and 23 to 25
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Day 26

Review. Homework S due today.

Appendix D.

Day 27
Exam 2.
Know everything.

Day 28

EMS rules.
Look at examples from Appendix D concerning model creation.

Body

Become familiar with the Appendix D rules. A set of rules is given in Appendix D that
allow us to formulate models, calculate sums of squares, and derive EMS terms.

Chapter 26

Day 29
Nested designs.
Understand the nuances of the nested model.

Body

Understand how nesting changes our models and tests. When a factor is nested within
another factor, our model changes drastically; we have more parameters, and the ANOVA
and EMS’s change as well. We have more parameters because each level of the nested
variable is replicated for each level of the factor it is nested within.

Know how to use the EMS column to select the proper test. By specifying which terms
are random and which are fixed, we can select a proper test for each potential null
hypothesis. We are looking for terms in the EMS equations that are exactly the same
except for the term involving the null hypothesis parameter(s).

Chapter 27
Day 30

Repeated measures.
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Reading:

Activity:
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Distinguish and identify a repeated measures layout.

Body

Understand how a repeated measures model is an example of an RCB design. Each
subject is exposed to each treatment; in this sense then each subject is a block. Usually
subjects are thought to be a random sample from the population of all subjects, so this block
variable is typically considered a random block effect.

Hicks Chapter 13
Day 31
Split plots.
Recognize when a split plot design is appropriate.

Body

Identify factors that cannot be randomized within a block. Sometimes the nature of an
experiment makes it impossible or infeasible to use more than one level of a factor within a
block. This situation leads to the idea of whole plots and split plots. Our chief examples
will be the irrigation example and the baking temperatures example.

Recognize how this split plot design is an example of a repeated measures design. By
looking carefully at the components of the model, we should be able to fit this split plot
methodology into our repeated measures methodology. Tests and analyses will follow
normally.

Sections 28.1 and 28.2.
Day 32
BIBD’s. Homework 6 due today.

Construct BIBD’s. Notice that some combinations cannot be formed, and that some
combinations are simply duplicates of smaller designs.

BIBD’s:
1) r, * n,=r * n. Note that this value is the total number of experimental units in a BIBD.

2) n,=n(r,—1)/(n - 1), where r, is the number of treatments per block, n, is the number of
blocks, r is the number of treatments, n is the number of replications of each treatment, and
n, is the number of times each pair of treatments appears together.
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Recognize a Balanced Incomplete Block Design. BIBD’s are used when the block size in
an experiment is smaller than the number of treatments. We call them balanced because
each treatment appears the same number of times throughout the experiment. We call them
incomplete because not all treatments appear in each block. They are somewhat restrictive
because not all combinations of the indices exist.

Know the relationships among the indices of a BIBD. We have two equations that
define our BIBD’s. 1) r, * n,=r*n,and 2) n,=n (r,— D/(n-1).

Hicks Chapter 16.
Day 33
BIBD’s.

Analyze a BIBD using MINITAB.

Know the appropriate MINITAB commands to analyze a BIBD. Because the BIBD is
a linear model in the parameters, we can use GLM from MINITAB to analyze it. There are
no additional complications.

Sections 28.3 to 28.5.

Day 34
Latin Squares.
Understand Latin Square designs.

Body

Recognize a Latin Square Design. In a Latin Square design, there are two blocking
variables, in addition to the treatment variable. Each variable, blocking or treatment, has
the same number of levels. (These designs thus may be more appropriately called Latin
Cubes.) For three treatments, one design exists; for larger numbers of treatments, many
designs exist. I have not found a simple way to enumerate them.

Know the appropriate MINITAB commands to analyze a Latin Square. As in BIBD’s,
Latin Squares are simply linear models, with missing (empty) cells. The GLM command in
MINITAB will produce estimates and tests for us.

Sections 29.1 to 29.3.
Day 35

2" Factorials.




Goals:

Skills:

Reading:

Activity:

Goals:

Skills:

Reading:

Activity:

Goals:

Become familiar with factorial design notation.

Body

Know the notation when all factors have just two levels. When all factors have just two
levels, the notation for designating which treatment combinations are present is
abbreviated. Each letter will now indicate whether a factor is at the high level or not. A
missing letter designates the factor at low level. Thus the code “ab” in a 3 factor study
means Factors A and B are at high level, and Factor C is at low level. (1) is the code to
indicate all factors at low level.

Hicks Chapter 15.
Day 36
3" Factorials. Homework 7 due today.
Understand the effects of running just a fraction of the treatment combinations.

Body

Realize the benefits and drawbacks of not running all treatments. When we have
physical restraints that prevent us from performing all treatment combinations in an
experiment, we may wish to run just a fraction of the combinations. This “fractional
factorial” will typically suffer from some confounding. Thus, we may only run half of our
treatment combinations and will therefore be unable to estimate uniquely half of our
parameters. If these parameters are chosen wisely, we may still be able to estimate all
factor effects; typically some interaction terms will have to be assumed to be absent.

Recognize what effects have been confounded. In a fractional factorial, the columns of
the design matrix that are identical (or off by a minus sign) indicate which effects are
confounded with the effect (1), the intercept term. Once this confounded effect (or effects)
has been identified, we can complete the entire confounding scheme and see if any main
effects have been confounded with each other, an undesirable consequence. If the
confounded effects are chosen wisely, we will be able to estimate all main effects uniquely.

Hicks Chapter 15.
Day 37
Fractional Factorials.
Understand how experiments can be blocked with confounded effects.

Body
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Identify which effects in a fractional factorial are confounded with blocks. If we let
each block in a blocked experiment be a fractional factorial, then those effects will be
confounded with block effects. By appropriate choices of interaction terms to be
confounded, we can still recover enough useful information to make the design feasible.

Hicks Chapter 15.
Day 38

Fractional Factorials.

Body

Skill. Description.
Skill. Description.
Hicks Chapter 14.
Day 39
Confounding.

Body.

Skill. Description.
Skill. Description.
Hicks Chapter 14.
Day 40
Confounding.

Body.

Skill. Description.

Skill. Description.




Reading: Chapters 26 to 29, Hicks Chapters 13 to 16.
Day 41
Activity: Review. Homework 8 due today.
Day 42
Activity:  Exam 3.

Know everything.
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