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Day By Day Notes for MATH 385/585
Fall 2011

Day 1
Go over syllabus. Take roll. Guess some lines.

Review course objectives: To model linear relationships, interpret the model estimates, and
explore the various uses of regression. Introduce Least Squares. Introduce Excel.

Most if not all of you are taking this course as a mathematics elective. The topic of regression
is quite useful in fitting equations to data. Such equations can then be used with some degree
of predictability; researchers will be able to accurately describe and predict future
observations. Regression techniques are a basic part of many software packages, including
MINITAB and Excel, both of which we will explore.

I believe to be successful in this course, you must actually read the text (and these notes)
carefully, and work problems. The most important thing is to engage yourself in the material.
However, our class activities will sometimes be unrelated to the homework you practice and/or
turn in for the homework portion of your grade; instead they will be for understanding of the
underlying principles. For example, we will do simulations of the regression model. This is
something you would never do in practice, but which I think will demonstrate several lessons
for us. In these notes, I will try to point out to you when we’re doing something to gain
understanding, and when we’re doing something to gain skills.

I believe you get out of something what you put into it. Very rarely will someone fail a class
by attending every day, doing all the assignments, and working many practice problems;
typically people fail by not applying themselves enough - either through missing classes, or by
not allocating enough time for the material. Obviously I cannot tell you how much time to
spend each week on this class; you must all find the right balance for you and your life’s
priorities. One last piece of advice: don’t procrastinate. I believe statistics is learned best by
daily exposure. Cramming for exams may get you a passing grade, but you are only cheating
yourself out of understanding and learning.

In these notes, I will put the daily task in gray background.

Today I would like to explore the mathematical idea of Least Squares. With this technique, an
equation is “fitted” to data in such a way that the squared errors between the data and the fits is
as small as possible. Some history:

In 1795, Carl Friedrich Gauss, at the age of 18, is credited with developing the
fundamentals of the basis for least-squares analysis. However, as with many of his
discoveries, he did not publish them. The strength of his method was demonstrated in
1801, when it was used to predict the future location of the newly discovered asteroid
Ceres.

On January 1%, 1801, the Italian astronomer Giuseppe Piazzi had discovered the asteroid
Ceres and had been able to track its path for 40 days before it was lost in the glare of the
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sun. Based on this data, it was desired to determine the location of Ceres after it emerged
from behind the sun without solving the complicated Kepler’s nonlinear equations of
planetary motion. The only predictions that successfully allowed the German astronomer
Franz Xaver von Zach to relocate Ceres were those performed by the 24-year-old Gauss
using least-squares analysis. However, Gauss did not publish the method until 1809, when
it appeared in volume two of his work on celestial mechanics, Theoria Motus Corporum
Coelestium in sectionibus conicis solem ambientium.

The idea of least-squares analysis was independently formulated by the Frenchman
Adrien-Marie Legendre in 1805 and the American Robert Adrain in 1808.

(Taken from http://en.wikipedia.org/wiki/l.east squares.)

I want each of us to guess a good fit to some data I will supply, and we will then use the
computer to assess which of us made good guesses. I am going to begin using Excel, but later
we will use MINITAB quite a bit. However, I like to begin with Excel because we can see
dynamically what effect our changes have.

In the spreadsheet, I will use each of your guesses to calculate a fit for each point, and from
that we will find the error. The sum of the squared errors will be our measure of goodness;
small sums mean close (and therefore good) fits.

Understand the definition of Least Squares. Least Squares is a mathematical concept of
goodness concerning data and an equation describing the data. Each data value has a “fit”
from the model, and the “best fitting equation” is the one that makes the total sum of the
squared deviations from the fitted model as small as possible.

Know how to input the formulas in a spreadsheet (or by hand) to assess the goodness of a
model. We usually put our data into columns when we use a spreadsheet. Additional columns

needed to calculate Least Squares are “fit”, “error”’, and “squared error”. The sum of the
squared error column is the measure for how well a model is fitting.

Realize that the idea of Least Squares is not tied to the notion of Linear Models. The
model that we fit can be any calculable equation. It is common to use models that are linear in
the parameters, but is not necessary.

(The reading mentioned in these notes refers to what reading you should do for the next day’s
material.)

Sections 1.1 to 1.5.
Day 2
Simulate the basic regression model.

The model we will begin using is the basic regression model, also called simple linear
regression. It has one independent, or predictor variable, onec dependent, or response
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variable, several parameters, and a random error term. Notice the model is linear in the
parameters because they do not appear multiplied together or with any exponents. This idea
becomes very important in Chapter 5 when we use matrices. The error term helps explain
unexplained variation, sometimes called “white noise”. These errors may be due to other
unmeasured variables, or perhaps to just randomness that we cannot explain. One of our tasks
in upcoming sessions is to try to determine if the data we’ve collected matches the model
we’ve selected. Then we will be paying very close attention to all of our assumptions in this
basic model.

The alternate model on page 12 is a centered model. We will want to use this model after we
learn about multicollinearity (Day 23). The important feature of this model is that it yields the
same fitted values, and is thus an equivalent model. It is important for you to be able to show
the equivalence of the two models algebraically, i.e. prove it is true.

I think the best way to understand the model presented on page 9 (equation 1.1) is to use a
computer to simulate responses from it. We can see the true line on a graph, and how data are
scattered around the line.

In my simulation I will assume the errors have a normal distribution, but that is not required
for estimation purposes. When we apply statistical inference, however, we will require that
assumption. In my spreadsheet, we will be able to control which error distribution we use.
One of our goals is to see if different distributions create different views.

Understand the notation and ideas of the basic linear model.

Understand each term in the basic regression model. Understanding regression begins with
understanding the model we are posing. You need to know what parameters are, and how
they differ from random error. You should be able to recite the model we use from memory.

Know how to simulate the basic regression model. From our class demonstration, you
should be able to produce a simulation yourself, using a spreadsheet or other computer
program, such as MINITAB. While I haven’t gone through the MINITAB commands, if you
would like to use that program to do simulations, I can help you outside of class.

Understand the alternative “centered” model. In some cases we want to use transformed
data instead of raw data. The resulting model produces identical fitted values and is thus an
equivalent model. However, the parameters we use are different. In a sense, parameters are
merely a convenience for us to describe a model, and are not unique.

Sections 1.6 to 1.8 (first part).
Day 3
Estimation of Parameters.

Today we will use Least Squares, and some calculus, to derive the estimates for the simple
linear regression model. We will encounter Non-Linear regression later (Chapter 13, Day 37),




but today I will introduce it with a separate model, and we will see how the calculus approach
takes us only so far.

To minimize the sums of the squared errors, we will treat the data as fixed, and the parameters
as variables. Then, as you know from Calculus I, we find where the derivatives are zero to
locate the extrema, in this case the minimum(s). For Simple Linear Regression, it turns out we
can do these results with simple algebra. Later on, with more variables (Chapter 5), we will
have to use linear algebra instead.

The calculus we do today will involve partial derivatives; for those who haven’t had Calculus
III yet, fortunately these derivatives are not any trickier than regular Calculus I derivatives.
The key is to think of the other variable not being looked at as a fixed constant. Once we have
found the derivatives, we set them to zero, simultaneously, and solve. In general, this step is
quite difficult. For the case of Simple Linear Regression, it turns out to be quite
straightforward. The key is that the derivative of squared functions are linear functions (the
power rule).

Today is the first day we formally see the residuals, the deviations from the fitted values.
Residual analysis is quite important as it is our chief tool for assessing model adequacy. We
will come back to them later (Chapter 3). For now, what you need to know about them is their
definition and some basic algebraic facts about them, in particular that they sum to zero.

Our last result today involves the error variance, o°. The reasoning behind our estimate of the
variance, which is called the mean square error or MSE, is beyond our abilities; you would
use techniques from Math 401. The idea is understandable, but requires that you understand
the difference between the residuals e, and the error terms ¢, The residuals are calculated from
data values; the error terms are unobservable terms in the model, the result of a random
selection from a distribution. The key result is that if the model is correct, then they have the
same normal distribution, so that the variance of the residuals ought to be the same as the
variance of the error terms. There is also one more additional complication: degrees of
freedom. Again, using Math 401 results, we find estimates for variances by dividing sums of
squares by degrees of freedom. The ANOVA results from Day 6 will shed additional light
on this situation.

Know how the estimates of the basic model are found.

Know how calculus is used to derive the Least Squares estimates. Because Least Squares
is an optimization, we can use basic calculus results to derive the answers. The key idea that
makes the solution feasible is that the derivative of squaring is linear, and we know much
about solving systems of linear equations. Once we have the partial derivatives for all
parameters in the model, we simultaneously set them equal to zero and solve.

Know the formulas for the model estimates for slope and intercept. While I'm not a fan of
memorizing results, it will be helpful to know at least the form of the least squares estimates.

Know the definition and simple results for residuals. The residuals are the deviations of the
data from the model. We can also think of them as the “error” in the fit. You should know the
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formula for them as well as simple facts about them, such as their sum is zero and their sum of
squares gives SSE.

Know the best estimate for the model variance. Because the residuals behave similarly to
the model error terms, their mean square, or sample variance, estimates the model variance.
The key idea will come up again: variance is estimated using a ratio of sums of squares and
degrees of freedom. See Day 6.

Know what the Estimation of Mean Response is and how to calculate it. Often we want to
estimate a particular point on the regression line. This is a mean response, and should not be
confused with a prediction of a new observation. Basically, to estimate a mean response for a
particular x-value, substitute that new x-value in the fitted equation.

Sections 2.1 to 2.3.
Day 4
Inference on slope and intercept using a simulation.

I believe the best way to see how the distribution results work is to conduct a simulation. We
will do problem 2.66 on page 98 to demonstrate how sampling distributions work. The idea is
to generate many, many samples of results and then calculate the estimates for each sample. If
we look at appropriate graphs (like a histogram) we can compare the theoretical results with
the simulated results.

In addition to the simulation, we will also look at the theoretical results. The key on page 42 is
that the equations can be rewritten as linear combinations of the y-values. 1 don’t expect you
to memorize the details, but you should know the results: the least squares estimates have
normal distributions. Therefore, to derive the means and variances we need for the confidence
intervals and tests, we use the linear combination formulas from Math 301.

Fortunately, in MINITAB, the calculations are mostly done for us; it is just a matter of
interpreting the outputs, which we will spend time doing in class. For hypothesis tests, you
must know which null hypothesis is being tested, and how to interpret the P-value. The
confidence interval needs to be calculated manually (from the basic output). Of course, it is up
to you to learn how to use the software yourself.

Know the basic confidence interval and hypothesis test results for the slope and intercept.

Know that least squares estimates are linear combinations of the y-values. Once we write
the least squares estimates as linear combinations of the y-values, the linear combination
formulas can be used to calculate the mean and standard deviation of the estimates. You do
not need to memorize the particular weights in the formulas, but you should be able to follow
the algebra on page 42.

Know that least squares estimates are tested with the 7-test. We know the estimates are
linear combinations. We also know that MSE is an estimate of ¢°. Using this information,




Reading:

Activity:

and results from Math 301 and Math 401, we can test the estimates using the #-distribution
results.

Understand how simulation can be used to observe sampling distributions. Using the
spreadsheet in class, you should understand what we mean by the sampling distributions of the
least squares estimates. In particular, you need to have a solid understanding of the mean and
standard deviation. If our model is correct, we can predict how variable the fitted line can be,
and from that information we can assess the fitness of our model.

Sections 2.4 to 2.6.
Day 5
Interval Estimates.

In addition to point estimates, in statistics we typically use interval estimates. Using our
simulation from Day 4, we can investigate how variable the interval estimates are, and we can
observe how the confidence coefficient is interpreted. The chief idea is that the interval
estimate contains a notion of the sampling variability along with it. The confidence coefficient
represents the chance that the interval contains the true parameter, in this case the value on the
regression line. Our simulation should show us this.

It is important that you recognize the two types of intervals we are generally interested in:
estimation of a mean response, and prediction of a new observation. With the mean response
we are estimating where the true regression line falls. With the prediction interval, we are
recognizing two sources of variation: the sampling variation, and the randomness inherent in
the model, encompassed in the error terms. The formula (on page 59) shows us these two
sources of variation, and is thus much wider than the interval for the estimation of a mean
response. I will refer back to these simulations often throughout the rest of the course.

We can construct a confidence band by applying our mean response results for all possible x-
values. This yields hyperbolas (see page 62). The key difference between this band and an
individual confidence interval is that the band’s confidence coefficient is a family confidence
coefficient. The proper interpretation is the coefficient is the chance that the true regression
line lies entirely within the band.

Use the Math 301 results on confidence intervals to estimate the parameters with intervals.

Know how to use the confidence interval results from Math 301. In Math 301 we used the
normal curve to estimate a parameter, giving a range of values between which we believed the
parameter was. The interval was composed of a lower value and an upper value, and a
confidence coefficient, which represented the chance that the random interval contained the
parameter.

Know how a prediction interval differs from a confidence interval for a mean response.
To estimate a new response, we must not only account for the variation inherent in the model
(the ¢ error terms) but also the uncertainty in our estimates themselves. Thus the prediction
interval is wider, having two sources of variation.
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Know how to construct and interpret a confidence band for the regression line. A typical
confidence interval estimates a single parameter or combination of parameters. A regression
band around the line estimates the region where the line may completely fall. In general, due
to this global sort of coverage, it must be a larger (wider) interval.

Section 2.7.
Day 6
ANOVA. Homework 1 due today.

The ANOVA table is a convenient way to summarize the information we have about the least
squares estimates. We will examine the details today. Some of what we will do is algebraic.
The key result is that the sums of squares we are interested in are additive. The sums of
squares decompose into two orthogonal components, which means their sums of squares are
additive (the cross product term sums to zero). The degrees of freedom associated with these
sums of squares are also additive. We will be unable to prove this fact, as it relates to
advanced linear algebra. It happens that degrees of freedom can be conveniently associated
with parameters estimated, although that appears to be a mysterious explanation.

The last column in the ANOVA table is the Mean Square column. You are already familiar
with this idea from calculating the sample variance, where you took a sum of squared
deviations and divided by one less than the sample size. That calculation was really a “sum of
squares” divided by a “degrees of freedom”. In regression, these Mean Squares, under suitable
conditions and hypotheses, have a chi-squared distribution. The ratio of two independent chi-
squares divided by their degrees of freedom has an F distribution.

Sometimes an additional column is included in the table, representing the Expected Mean
Square. Developing these formulas requires much more mathematical statistics than we have
so far, so we will accept these formulas from the text on faith. I have found the greatest use
for these EMS’s is in choosing the proper test statistic in experimental designs, one of the
topics of Math 386, taught in the spring.

With only one independent variable, the ANOVA table shows us nothing we didn’t already
have with our standard ¢-tests and intervals. However, when we proceed to more than one
independent variable, the ANOVA approach is vital as the #-procedures will be inadequate.

The main test we perform is whether there is a relationship present or not. This is most easily
phrased by equating the slope to zero. Again, we already have a r-test for that, but there is a
corresponding F-test too. One difference between the two is that the #-test is a little more
flexible in that we can test one-sided alternate hypotheses, whereas with the F-test we must
use the two-sided alternate.

Understand the details of the ANOVA table, including the F-test.

Know the layout and the relationships of the ANOVA table. The sums of squares and
degrees of freedom in an ANOVA table are additive. We can show the sums add using
algebra; the degrees of freedom require advanced linear algebra. However, we can relate the
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degrees of freedom to estimation of parameters. The ratio of the two is a Mean Square, and
ratios of Mean Squares form the basis of our F-tests.

Understand the components broken down by the Sums of Squares decomposition. The
sketch on page 64 helps remind us what quantities are involved in the sums of squares. The
key notion is that we have different estimates involved, and the deviations from these
estimates are the components in the sums of squares. Caution: not all sums of squares will add
in this way; we must also check the orthogonality. Fortunately, for the regression results we
encounter, the sums of squares always decompose.

Know the F-test for testing the slope is zero. While we already have a test for the slope
being zero, the #-test, we will not be able to get by with #-tests when we introduce more than
one independent variable. One important restriction is that the F-test can only test the two-
sided alternate hypothesis.

Section 2.8.
Day 7
GLM and R°.

One convenient way of testing regression models is to test individual parameters, as we have
been doing. For example, our basic test is whether the slope is zero or not. Another approach
is to fit different models, and compare the SSE for each model. This new approach is called
the General Linear Models approach, or GLM. We will see more of this approach later, in
Chapter 7, but it is appropriate for us to see it now too.

The GLM test is another F-test, so we need a ratio of mean squares. The difference in this test
is that one of the mean squares is found by subtraction. We follow the steps on the bottom of
page 73. I will demonstrate using various null hypotheses, including B, =0, B, =2, and

Bi = Po-

We have one last detail before we continue on to diagnostics and model checking. One
common measure of the goodness of a model is the value of R°. This value is simply the
percentage of the total variation accounted for by the regression line. Note the misconceptions
on page 75. It is important that we don’t misuse this measure. It says what it says, nothing
more. Its best use is in comparing different models.

Introduce the General Linear Models approach to testing hypotheses. Explore the goodness of
fit measure R’.

Know the strategy behind the General Linear Models approach. For simple hypotheses,
like the slope is equal to a constant, we can use the GLM approach for testing. The key is to
fit two models, and compare the SSE’s appropriately.

Know the details of using the GLM approach. After fitting the two models, we compare the
MSE’s in a new F-test. An important detail to worry about is that some models have to have
the y-values transformed according to the null hypothesis. See the class notes.
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Know the calculation and interpretation of R’. R’ is a measure of the goodness of a model.
It is the fraction of explained variation, as compared to the overall variation in the y-values.

Sections 3.1 to 3.6.
Day 8
Residuals 1.

So far we have only discussed fitting a model. However, we must also check to make sure we
have a reasonable model, and that all the assumptions of our model seem reasonable. Our
chief tool for making these assessments is residual analysis. The behavior of the residuals,
the deviations from the model fit, tells us a lot about the effectiveness of the model. We can
use them to test for normality, for goodness of fit, for influential outliers, and other departures
from the model.

We first will examine the formula for residuals and see what we can deduce about their
behavior. For example, are they a linear combination of the y-values, as the slope and
intercept were? We will take some time today to try our hand at algebraic manipulation to see
if we can answer that question.

Next, we will check for goodness of fit by looking at plots of residuals versus independent
variables, both those included in the model and those not yet included in the model. If our
residual plots show any patterns, we have evidence of “lack of fit”, or in the case of variables
not yet included in the model, evidence of missing variables. What we’re looking for is a
random scatter of points. If we see patterns, such as increasing spread, or organized clustering,
we suspect we have a not-so-perfect model. Sometimes we can correct the defect with
remedial measures, which we will pursue on Days 10 and 11. Be cautious with your
interpretations of these plots. It is tempting to say that something is a pattern when it really is
just the result of randomness. Of course, this is somewhat of a judgment call. The more you
study regression and use it in real world data, the better you will be at the art of model fitting.

Introduce residuals as a diagnostic tool.

Know the definition of residuals. The departures of the data from our model are the
residuals. Each data value produces one residual, and they are measured in the same units as
the y-values. We have encountered residuals before; they are the items being squared and
summed in the least squares exercise.

Know how residuals are (roughly) distributed. Because the residuals can be written as
linear combinations of the y-values, we know they have normal distributions. Unfortunately,
they aren’t distributed with the same variance; their variance depends on their distance from x-
bar. However, we can use MSE as an approximate variance.

Know about basic residual plots. Our chief diagnostic tool will be residual plots. If we plot
the residuals against the independent variable, we can see if we have lack of fit, or non-
constant variance, or extreme outliers. We can also plot residuals against variables not already
in the model to see if those variables would help explain variation.
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Sections 3.1 to 3.6.

Day 9
Residuals II.
Continuing our exploration of residuals:

We check for normality of errors by looking at probability plots, histograms, etc and
comparing them to the corresponding normal curve plots. If we use normal probability plots,
we can use the Looney table, Table B.6. There are other tests for normality that we can
discuss, but the Looney table is the easiest to use. The details of constructing a normal
probability plot are on page 111. Essentially we are comparing the actual data with where data
of that rank (3" smallest, 4™ smallest, etc) would fall if the data were truly normally
distributed. If the data is normally distributed, this plot will be linear. To use the Looney
table, we calculate a correlation coefficient for the normal probability plot. If it is large, the
data looks normal.

Another simple test we can perform is the Brown-Forsythe Test. We assume in our model that
the variance of the error terms is constant, i.e., not dependent on the value of x. An easy way
to check this is to compare the spread of the residuals for the residuals associated with small x-
values to the spread of the residuals for the residuals associated with large x-values. The
details of the test use the 2-sample 7-test: we first calculate the absolute size of the residuals
(about their median) in each half and then perform a pooled 2-sample #-test on these absolute
residual deviations.

Know how to create and interpret a probability plot. Understand the Brown-Forsythe test.

Know the steps needed to create a normal probability plot. We have several options to
creating a normal probability plot. Of course, we could use software, such as on the TI-83 or
in MINITAB. But you will not be able to use the tests from the TI-83. Therefore, you should
know how to create one yourself. Basically you are going to translate each rank using an
inverse normal calculation, (3.6) on page 111. Then plot these inverses versus the data.

Know how to use a normal probability plot to detect normality. If the data is normally
distributed, the normal probability plot should be a straight line. The Looney and Gulledge
Table (B.6) on page 1329 gives us the critical values of the correlation coefficient for
assessing whether the observed line is close enough to straight. If the observed correlation is
high enough, we conclude that normality is plausible.

Know the details of the Brown-Forsythe Test. The Brown-Forsythe test helps us determine
if the variance is constant. We split the data set into two parts, based on the independent
variable, and find the size of the residuals in each half. The test statistic is a modified two-
sample 7-test, based on the absolute size of the residuals around their respective medians.

Section 3.7.
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Day 10
Lack of Fit.

When we have at least one x-value that has more than one observation, we can calculate a
standard deviation for that “internal error”. Using partitioning similar to that on Day 6, we can
formulate a test to check for one kind of “lack of fit”. We are able to estimate a “true”
variance for the model, by pooling together all the variance estimates from all the unique x-
values. If we compare this value to the MSE from the linear model, we have the basis for a
test.

The lack-of-fit test is a GLM test. The Full model has a mean for each unique x-value. The
Reduced model is the standard linear model we’ve been using. If we have ¢ x-values with
repeated observations, then our “pure error” sums of squares has n — ¢ degrees of freedom.
(We lose one degree of freedom for each unique mean we have to estimate to calculate the
pure error sum of squares.) The standard linear model has n — 2 degrees of freedom. The
details of the test are on page 123.

A few comments on this technique: we need only have one x-value with repeats. The idea is
that we get an estimate of the variance that is independent of the linear model. If we have no
replicates, we can use near replicates. These require judgment; if we choose cases too far
from each other, our estimate of the variance may be too large. If we choose too few cases, the
degrees of freedom may be too small to be useful.

See how to use internal variances to check for lack of fit.

Know how to set up the Lack of Fit testing procedure. To setup the ANOVA table for the
Lack of Fit test, we must calculate the variances of each unique x-value. (Note that the
variance is zero for x-values with no replicates.) We pool all the variance estimates together,
weighting by the degrees of freedom. The difference between the linear model SSE and this
new pure error sum of squares (the numerator of the pooled variance) is the numerator for our
F-test. The pooled variance, MSPE, is the denominator.

Know the details of when the Lack of Fit test can be used. When the null hypothesis is
true, the test statistic (3.25) on page 124 has an F distribution. So, small values of F support
the null hypothesis that the linear model is an appropriate model. The alternate is that some
other model is appropriate. Notice we are not specifying what the other model is if we reject
the null. There are n — ¢ degrees of freedom for MSPE, so we need at least one repeated x-
value. But note that not every x-value need be repeated.

Near replicates require judgment. In some data sets, and with the judgment of the user, we
can use clusters of points as “near replicates”, pretending they are repeated x-values for
purposes of calculating MSPE. Of course the further apart the real x-values are, the less likely
that particular estimate of the variance is to be correct. One must use good judgment as to
what constitutes “close enough”.

Sections 3.8 to 3.9.
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Day 11
Transformations.

After we uncover departures from the model, we often use remedial measures to correct the
model. The most common of these is a transformation of the response variable, but sometimes
transforming the x-values can be effective.

We can use several prototype plots to help with our choice. A few examples are on pages 130
and 132. But the extent of the curvature may be such that even these transformations are
insufficient. However they are often a good first attempt at remediating the lack of fit.

Another procedure to select a transformation is the Box-Cox procedure. What we seek is a
transformation of the Y variable that corrects the non-constant variance as well as the non-
normal errors, if needed. The transformation is given on page 135, as well as the formulas for
finding the optimal power (3.36). We will use Excel to implement these, but one could also
have MINITAB perform the operations. The key is that we fit many models and choose the
one that makes SSE small.

Investigate using transformations to improve the model fit.

Be familiar with the prototype plots for making transformations. The prototypes on page
130 show us suggestions for transforming the x-variables to correct certain types of monotonic
lack of fit. The ones on page 132 give us an idea of transformations for the y-variable to
correct some types of non-constant variance. However, we may not find a suitable
transformation just using these diagrams.

Know the Box-Cox transformation procedure. To find a reasonable transformation of the
response variable, the Box-Cox procedure finds a suitable power for the transformation.
Because of differences in scale, and after a suitable transformation, we can compare SSE’s for
a variety of powers. The one that minimizes SSE is the most reasonable transformation, which
will often correct non-constant variance and lack of fit problems as well.

Sections 4.1 to 4.3.
Day 12
Simultaneous Inference. Homework 2 due today.

Due to the nature of the relationship between the least squares estimates, it is inappropriate to
make inferences about them separately. When one increases, the other is likely to decrease.
Simply making two interval estimates would be too conservative, yielding a higher confidence
coefficient than is appropriate. Today we will explore a more efficient method, making use of
the correlation between the two estimates.

First, let’s look at the two estimates jointly. Equation (4.5) on page 157 shows us the
relationship between the two estimates. We can see this correlation from our simulation from
Day 4. Notice that if the x-bar is zero, the two estimates are uncorrelated, and because they
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have normal distributions, this makes them independent. Our text does not have a method to
construct exact confidence bounds when the two estimates are correlated, so I will show you a
technique from an earlier edition of the text. Because the distributions are bivariate normal,
we construct ellipses around the estimate, lying on a tilt, wide or narrow according to the
correlation.

Here are the details of the method. We need to have the two estimates, b, and b,, the sample
mean, the sample sums of squares, MSE, and F. We then assemble using the following

X 2(MSE)F Sx? —nx?)(b, - B.)*

formula: b, + n—xz(bo -B,) = ( Sz) _ n(xx” - nx 2)(2]90 By)
2x Sx (=x?)

this equation in the f3,/B, axis system. The interpretation of this region is analogous to the

interpretation of a confidence interval: there is a 95% chance that the constructed region
captures the true parameters. We will compare this approach to the Bonferroni approach next.

. Note that we are plotting

The exact joint confidence interval above is complicated at best, and is much worse for the
multiple regression coming up later. A much simpler approach is to use the Bonferroni
inequality (4.2) on page 155, which basically allows us to apportion the error probability into
parts. For example, if we make 2 inference statements and want a 95% chance that both
statements are true simultaneously, we could use 97.5% confidence levels on each statement.
(We have divided up the 5% error into two equal parts in this case.) The joint confidence is a
lower bound, so we have at least a 95% chance that both statements are correct. The real
advantage of the Bonferroni method is that it extends easily to multiple regression.

Explore the important concept of simultaneous inference.

Recognize the issue of making multiple inference statements. When we make several
confidence statements, the chances that they are all correct at once gets exponentially smaller
as more and more statements are made. We have several approaches to dealing with this. One
is to use the actual joint distributions of the estimates, but this approach is often quite
complicated. Another approach is to use probability statements to produce conservative
families of confidence intervals, such as with the Bonferroni method.

Know the Bonferroni method. The Bonferroni inequality shows us that the probability in a
confidence family can be apportioned equally among the individual intervals. The family
confidence coefficient is then at least as high as desired. The main usefulness of this
technique is that the statements being made can be of any sort, from any analyses, as long as
we divide up the error probability appropriately.

Know of the true joint inference statements. Because the least squares estimates follow the
normal distribution, and we can calculate their correlation, we can form ellipses around the
estimates that capture the desired amount of the probability distribution. Also, note that if the
mean of the independent variable is zero, the estimates are uncorrelated, and the resulting
“ellipse” is really a circle.

Sections 5.1 to 5.7.
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Day 13

Review.

Know everything about simple linear regression!

Reading:

Activity:

Activity:

Chapters 1 to 4.
Day 14

Exam 1. This first exam will cover simple linear regression, including estimates, inference,
diagnostics, and remedial measures. Some of the questions may be multiple choice. Others
may require you to show your worked out solution. Don’t forget to review your class notes
and these notes.

Day 15
Introduction to Matrices.

The simple linear regression model can be written with matrices. This forms the basis for
using matrix algebra to perform statistical regression. We will take a few days to go through
the algebra involved, building up to being able to write all of our results so far using the much
simpler matrix algebra equations.

The most important operation of matrix algebra that we will use is matrix multiplication. You
are already familiar with this operation, as it is part of the way your GPA is calculated, a sum
of products. (“This times that” plus “this times that” plus etc.) Basically, any sum of products
of two items (sometimes using a 1 as one of the multiplicands) can be written as a matrix
product. If we have several such products, as is the case in regression, we simple add more
rows to one of the matrices involved. We will setup the basic equations from regression to
demonstrate the matrix multiplication.

Another useful application of matrix multiplication is the product of a vector and its transpose.
This creates a 1 by 1 matrix of a sum of squares, which as you can imagine, is important to us
in creating the ANOVA table, and other statistics we’ve been using. We will also look at the
important class of quadratic forms, which also produce scalars that are sums of squares.

I will outline the idea behind the least squares estimates, without using calculus, but the result
can also be derived that way. The chief operation involved is matrix inversion, which we will
look at briefly today. However, naturally in practice we will use computer software for the
actual calculations. It is still important for our analyses to know exactly how matrix inversion
is performed. We will go through a few examples to illustrate. I especially want to do an
example where the determinant is close to zero.

Begin the transition from regular algebra to matrix algebra.

Understand matrix multiplication. A sum of binary products can be written as the matrix
product of two vectors, one a row vector and one a column vector. With many such
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combinations, we have what is called matrix multiplication. Only two conformable
matrices can be multiplied together, as the binary products must have the same number of
elements or they cannot be paired together. Also, matrix multiplication is not commutative.
Order is very important, and we must take great care with our algebraic operations such as
transposing.

Be able to write the Linear Regression model using matrices. Using matrices, one for the
data and one for the parameters, we can write the basic regression equation. We also need a
vector for the error term, but due to calculus results we often only concentrate only on the X
matrix, the actual data collected.

Know the important class of matrices that produce a scalar that is a sum of squares.
When we multiply a row vector and its transpose, the corresponding column vector, we see
that we are really squaring each term and then summing. Thus for example Y'Yis the sum of
the squared y-values. As you have seen, our ANOVA table uses sums of squares as the basis
for our inferences, so this feature of matrices is quite important to us.

Know of matrix inverses and how they’re used in regression. As we will see from Day 16,
the least squares results involve matrix inversion. You should know the definition of a matrix
inverse, and how to calculate one, or at least how to verify that a given matrix is the inverse of
another. Further, you should understand some of the difficulties in calculating an inverse, and
you should also know that not all inverses exist. This situation is analogous to dividing by
zZero.

Sections 5.8 to 5.13.
Day 16
Regression Matrices.

We will continue with our matrices, and find out how much easier it is to write the regression
results with matrix algebra. I also want to try a little matrix calculus results, to demonstrate
the complexity of matrix algebra.

We will begin by looking at the residuals formula. Then we will find the sum of the squared
residuals using our matrix multiplication trick, and using calculus results, derive a solution to

the least squares problem. The solution is B =(X'X)"' X'Y. The most important feature of this
equation is that the estimates are linear combinations of the observations. Revisiting the

residuals formulas, we discover e =Y - Y=Y - XB = (I - H)Y, where H = X(XX)"' X'.

Now that we have expressed our primary formulas using matrices, we would like to be able to
derive distributions. To do that, we first need to know the rules. From Math 301, we know
these facts: E(aX +b)=aE(X)+b and Var(aX +b) = a’Var(X). When we have more than
one variable, though, the formulas get a bit more complicated. We have a new idea, called
covariance, which is closely related to correlation. An important consequence of covariance
and correlation is that if two variables are independent, their correlation (and also their
covariance) is zero.

In class we will derive the expectation and variance formulas for matrices. The conclusion is
quite  similar to the Math 301 material: E(AX+B)=AE(X)+B and
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Var(AX + B) = AVar(X)A'. applying these results to our least squares estimates, and to our
residual formula, gives us the necessary background for inference. We will explore this
further on Day 18.

Know how matrices are used in regression formulas.

Know the form of the Least Squares Formula. Using matrix calculus, we can find the least
squares estimates. What we are trying to do is the same as before: minimize the sums of the
squared errors. Using matrix notation, we have Q= (Y — XB)'(Y — XB), which is a 1x1 matrix,
a scalar.

Be able to derive the least squares estimates. Using Q, you should be able to use calculus
and find the derivatives with respect to B, and then solve using matrix algebra. The result is

1§=(X X)"'X'Y, and the important feature is that the least squares estimates are linear
combinations of the independent variables.

Know the residuals formula. Using the least squares formula, the residuals can be written as
e=Y-Y=Y-XB=(-H)Y. In particular, note that the residuals are a linear function of the
observations. We make use of this fact when we determine distributional results.

Know the variance results of a random vector. Know how to take a matrix equation and
derive its mean and variance. In general, we have E(AX+ B)=AE(X)+B and
Var(AX + B) = AVar(X)A'.

Sections 6.1 to 6.2.
Day 17
Multiple Regression Models.

Today we begin real regression, using more than one independent variable. We will discover
more complicated models, due to the multiple dimensions. Our first look at multiple
regression will be at the various different techniques used, including:

1) More than one independent variable.
2) Indicator variables.

3) Polynomial regression.

4) Inherently linear models.

5) Interaction variables.

Each of these situations will be examined in later chapters, but we can see their common
features using our regression results.

Introduction to the various multiple regression models we will encounter in later chapters.
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Be able to write the regression models for the five situations listed above. Knowing how
each situation uses matrices is the key to writing multiple linear regression models. You must
be able to perform matrix multiplication to achieve the proper models. See your class notes.

Understand the real definition of Linear. We might naively believe that “linear” means
“straight line”. In fact, for our purposes in this course on “linear models” it means that the
model can be written using matrices. In particular, polynomials qualify as linear models under
this definition. A common explanation of this idea is to say the model is “linear in the
parameters”.

Know the full statement of the Multiple Linear Regression model. Using matrices, you
should be able to fully detail the multiple linear regression model, including error term
assumptions. We typically assume normal errors, which lead to the usual 7- and F-tests and
other inferences.

Sections 6.3 to 6.6.
Day 18
Inference.

We will revisit the matrix results from Chapter 5, but with emphasis on the inference results.
Specifically, we will look at the ANOVA table and the #-tests and F-test.

See how we use matrices with the inference results we need.

Know the sums of squares formulas using matrices. The three Sums of Squares formulas
are presented on page 225. You should be able to write and manipulate them. Don’t worry
about the E(MSR) formula details; the important fact with E(MSR) is that under the null
hypothesis, it should be the same as E(MSE).

Know the matrix results for inference. Using our rules from Day 16, you should understand
what the means and variances are for the least squares estimates, the hat matrix, and the
residuals. Because we use the normal assumption for our errors, you should understand how
to use the means and variances to create z-tests and intervals.

Section 6.7.
Day 19
Intervals.

We will revisit the interval formulas we saw earlier, including the prediction interval. Once
again, the expectation and variance rules guide us. The details are on page 229.

Use the matrix results with the interval formulas.
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Reading:
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Know the matrix representation of the inference intervals. Using our expectation and
variance rules you should be able to understand the confidence intervals for mean response and
for predicting a new value. For a confidence interval for the mean response, remember we are
trying to guess the true mean value for that set of x-values whereas when we predict a new
value we also incorporate the uncertainty in the individual observations, measured by o.

Section 6.8.
Day 20
Diagnostics.

The chief diagnostic tool for multiple regression is once again the residual plot. However, we
have many more options now as to what independent variable to plot the residuals against. In
addition, we often want to see the relationships between the independent variables.

We can also modify the other techniques we saw earlier, such as the Brown-Forsythe test or
the Lack of Fit test.

Begin the residual analysis for multiple dimensions.

Know the uses of the scatter plot matrix. The scatter plot matrix shows us the simple two-
way scatter plots for all the variables in our database, but in one display. We can see at a
glance which variables are most correlated with the response variable, and also with the other
independent variables.

Know how to modify the earlier diagnostics for use in multiple regression. We can
modify our earlier techniques in multiple dimensions. These include the Brown-Forsythe test,
the lack of fit test, and the Box-Cox procedure. The Brown-Forsythe test is used on each x-
variable in turn. The lack of fit test can be used wherever we have multiple responses; the
addition independent variables have no effect on the details of the test. The Box-Cox
procedure is modified by using all the independent variables, instead of just one.

Section 7.1.
Day 21
Extra SS. Homework 3 due today.

Today we revisit the important class of tests for comparing hierarchical models. In these
models, we have a “Full model” and a “Reduced model”, as we saw in the lack of fit tests from
Day 10. The Full model has the most parameters, and our assumption is that it is an
adequately fitted model. In other words, the Full model is assumed to be “correct”. The
Reduced model has one or more of the independent variables from the Full model removed.
Statistical theory shows that under normal errors models, the sums of squares for these two
models are additive, but we require a different interpretation for the extra sum of squares.
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The order the variables enter the model is critical. As variables are added, we add successive
“extra sums of squares”. The increase lets us know how useful the added variables are in
explaining variation. If the extra sums of squares is a small value, this tells us the new
variable doesn’t substantially help explain variation. It is important to realize that the extra
sum of squares is not a measure of the importance of the added variable alone. It is only the
effect of that new variable given the other variables are already part of the model.

Explore how the order of the variables in the analysis gives different results.

Recognize the problem of the non-additivity of single-variable sums of squares with two
independent variables. When we add a second variable to a regression model, we explain
more variation. However, the additional variation explained is not typically equal to the
variation explained by using just the new variable alone. This non-additivity occurs whenever
the independent variables are correlated among themselves.

Know the definitions of the Extra Sums of Squares. The notation we use for the extra sums
of squares involves keeping track of what is in the model and what has just been added. It is
important to be able to tell these two sets of variables apart.

Know where to find the Extra Sums of Squares on MINITAB. In MINITAB, we look for
sequential sums of squares. The important feature to look for is the fact that the extra sums of
squares add up to the total sum of squares for the regression model.

Sections 7.2 to 7.3.
Day 22
GLM Tests.

Using our familiar GLM F-tests for sums of squares, we can test whether the most recently
added variables have zero value. We can also test other sorts of models, such as parameters
being equal, or function of other parameters.

In each use of the GLM tests, we must make sure that the full model contains all the reduced
model variables. The extra sums of squares facts only work in the case of nested models. An
equivalent interpretation is that the hierarchy holds when we set parameters equal to constants
and then consider the reduced model. (Technically, it is an issue with column spaces of the
matrices involved, but we will not get into those details.)

Today we will go over several types of tests that can be performed, including the interesting
examples of setting parameters equal to constants or each other.

Revisit the GLM procedures, and see how they extend to multiple regression.

Know the GLM procedure for testing in multiple regression models. once a model has
been established as a subset of another model, the GLM tests proceed in the same way as we
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have seen already: a Reduced model MSE is compared to a Full model MSE, and the F-test is
used.

Sections 7.5 to 7.6.
Day 23
Computational Problems and Multicollinearity.

Sometimes, it is computationally hard to avoid round off errors in multiple regression. This
may be due to variables being measured on different scales, but most often it is due to high
correlations among the independent variables. We can use the correlation transformation to
combat this problem.

The main source of computational difficulty in multiple regression is multicollinearity. When
the independent variables are correlated, we get the problem we saw on Day 21 with the Extra
Sums of Squares not adding together. If the variables are highly correlated, it becomes harder
and harder to estimate with any precision. One way to think about this is to imagine trying to
balance a board on two points close together, compared to two points far apart.
Multicollinearity makes two highly correlated variables appear as only one variable, and
therefore it is like an underdetermined system of equations; with perfect correlation, there are
an infinite number of solutions.

We have several ways of trying to deal with this, although we won’t pursue them in detail.
One simple way is to remove from the analysis any variables that are highly correlated with
other variables. The reasoning is that if the two variables are highly correlated, then just
knowing one of the pair is sufficient; being highly correlated means knowing one value is like
knowing the other value also. In Chapter 11, there is a technique to deal with
multicollinearity, called ridge regression, but we will not cover it. Of course, you may want to
read about it anyway.

Explore situations where the X'X matrix is nearly singular, and some cures for it.

Know why we have computational difficulties in the XX matrix. By examining some
simple matrix inversions, we can see exactly when we have multicollinearity problems.

Understand the use of the correlation transformation. By first standardizing our variables
through the correlation transformation, we can sometimes substantially decrease the
computational difficulties.

Understand the effects of multicollinearity. When multicollinearity is present, we can often
have a large estimate for the error variance, which results in unreliable estimates for the
regression parameters.

Section 8.1.
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Day 24
Polynomial Models.

As we have seen, straight line models are sometimes insufficient. It seems natural to try other
fairly simple models, such as polynomials. Because polynomials are still linear in their
parameters, our multiple regression techniques apply. There are complications, however. First
of all, we may have polynomials in more than one variable. The order of the polynomial is the
largest summed powers of independent variables, including interaction terms. For example,
z=x"+3xy+3x+2y” is a second order two-dimensional polynomial because the sum of the
exponents of both x and y in any term does not exceed two.

We can use our GLM techniques for testing purposes, but with polynomials, it makes sense to
include all lower order terms in a higher power polynomial. In addition, we find
multicollinearity problems if we don’t center the independent variables. When we are
interested in inferences for the original variables, as opposed to the centered variables, we can
use Chapter 5 matrix techniques to calculate the transformed variances. The purpose for
centering is to reduce computational problems due to multicollinearity.

Today we will experimentally look at the multicollinearity problem and explore inferences
using polynomial models.

Adapt polynomials to our linear algebra approach to regression.

Create the model for polynomial regression models with any number of predictor
variables. To make a polynomial model with matrices, we simply add columns to the X
matrix corresponding to the powers of the original independent variable(s). Adding these
columns is done after centering.

Understand why we center the independent variables before fitting a model. If a
polynomial model is not centered around the average for each independent variable, typically
large correlations result between the various powers of the independent variable. Often these
correlations will be substantially reduced if each independent variable (and therefore the
successive powers) are centered around their means before including them in the model.
Because we are using a linear transformation of the parameters (see p. 299), all inference
procedures can be modified with the appropriate matrix of coefficients.

Section 8.1.
Day 25
Interactions 1.

We will look at two types of interaction models: linear models with interaction, and curvilinear
models with interaction. There are many types of interaction models. The key idea is that the
response surface is not parallel. One way of modeling a curved surface is to include a cross-
product term. Today we will explore what adding a cross-product term does to the shape of a
linear model.




Reading:

Activity:

When we have additive independent variables, the response surface is a plane. We can see this
in 3-dimensions if we plot carefully, either with contours or with cross sections. With higher
dimensions, we have to trust the intuitions we learn with two and three dimensions.

What I want to do today is sketch some response surfaces, and see the effects of changing
parameter values. Later, when we fit models to data, I think it will help our interpretations if
we understand what the relative sizes of the parameter estimates mean.

1) EX)=10+1X+2Y
2) EX)=10+1X +2Y + 3XY

3)  E()=10+1X+2Y-3XY

For each of these functions, we’ll produce cross sections, and contours, to see which plots help
us see the surface adequately. The website “Wolfram Alpha” will help us greatly to produce
and understand these surfaces.

Understand the effects of interaction in linear models.

Use a contour plot or cross sections to explore a non-linear relationship. Through the use
of contour plots (holding the dependent variable constant and graphing the resulting set of
solutions) or cross sections (holding one of the independent variables constant and graphing
the resulting set of solutions), you should be able to visualize a three-dimensional surface.

Know how to include an interaction term in a linear regression. To include an interaction
term in a regression model, we use the product of two independent variables as a new variable.
The resulting effect on the surface is a sort of “twisting” effect. Along any cross section, the
surface is still linear. However, the slope of this surface is a function of the particular cross
section used.

Section 8.2.
Day 26
Interactions II.

The other type of interaction term involves non-linear polynomial models. We will repeat the
sort of activity from Day 25 but with polynomial models today.

1) EY)=10+1X -1X* +2Y +2Y?
2) EY)=10+1X -1X* +2Y +2Y* + 3XY
3) EY)=10+1X -1X* +2Y +2Y* - 3XY

For each of these functions, we’ll produce cross sections, and contours, to see which plots help
us see the surface adequately. Once again, Wolfram Alpha will help us visualize our surfaces.
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Relate interaction effects between linear and polynomial models.

Know how the interaction term affects polynomial models. In a polynomial model, the
interaction is formed in the same way, but causes interesting effects to the resulting surface. In
the case of a parabaloid surface, the interaction term rotates the ellipse. For other polynomial
surfaces, a similar effect to the linear case occurs, a sort of “twisting”, although in the higher
dimensions this twisting is more difficult to summarize.

Sections 8.3 to 8.7.
Day 27
Dummy Variables I.

A very useful technique in regression is the use of indicator variables, or dummy variables.
We will explore a variety of uses of indicator variables, including different intercepts, different
slopes, jumps, piecewise continuity, multiple levels, and interference variables. The important
feature of an indicator variable is that there are two possible levels, O and 1. A simple use of
one is when we have two treatments or categories that our observations fall into.

Different intercepts: If we include just the dummy variable as another variable, we get
different intercepts for our surfaces, but parallel slopes.

Different slopes: If we include a cross product of the dummy variable and another
independent variable, we get different slopes, but the same intercept.

Jumps: We must work a little bit to get a jump of a particular height at a predetermined point.
We will derive the proper function in class.

Introduce qualitative variables and some of their uses.

Be able to use qualitative variables. Indicator variables are variables with binary outcomes,
the simplest of which are the values O and 1. You should be able to use them in our models to
reflect parallel slopes, different slopes with the same intercept, discontinuities, and piecewise
linear functions (which we will discuss on Day 28).

Know how to make a model with different intercepts. By including an indicator variable in
the linear model, we create two parallel lines, one for each of the two binary categories. The
indicator variable coefficient describes the difference between the two intercepts.

Know how to make a model with different slopes. By including an interaction between the
independent variable and the indicator variable in the linear model, we create two lines, one
for each of the two binary categories, with the same intercept but different slopes. The
indicator variable coefficient describes the difference between the two slopes.

Sections 8.3 to 8.7.
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Day 28
Dummy Variables II. Homework 4 due today.

Piecewise Continuous: To make sure the functions intersect at a predetermined point, we have
to adjust the slopes and intercepts in just the right way. The key is to have the point where the
two functions intercept fall on both the line before the point and the line after the point.

Multiple Levels: If we have several categories, we can create one less indicator variable than
categories to accommodate our variable.

Interference variables: One way to deal with outliers without removing them completely from
the analysis, which can be a burden, is to include an interference variable. Essentially this
variable uses one degree of freedom, associated with the removed data point, and estimates a
parameter perfectly matching the residual.

Continue qualitative variables.

Know how to make a model with piecewise continuity. We can derive this model by
including both a dummy variable and an interaction with the dummy variable. However,
adding both new variables does not require the continuity at the predetermined point. To
maintain the continuity, we must describe the dependence between the two new parameters.
Depending on our parameterization, the new coefficient will either be the change in the
intercept (less interpretable) or the change in the slope (more interpretable).

Know how to make a model with multiple levels. To account for a categorical variable with
c different levels, we create ¢ — 1 dummy variables. Note that if we created ¢ dummy
variables, one for each level of the categorical variable, they would add together to form a
column of 1’s. Thus we can only use ¢ — 1 of them.

Know how to make a model with interference variables. We can create a variable with is
all zeroes except for the potential outlying case. This dummy variable is called an interference
variable and will fit the potential outlying case exactly, without affecting how the model fits
the rest of the cases. It will therefore be equivalent (in terms of estimates and inferences) to
having removed the case from the dataset.

Sections 9.1 to 9.5.

Day 29
Review.
Know everything.

Chapters 5 to 8.
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Day 30

Exam 2. This second exam will cover simple linear regression using matrices, including
polynomial models, interaction models, and uses of indicator variables. Some of the questions
may be multiple choice. Others may require you to show your worked out solution. Don’t
forget to review your class notes and these notes.

Day 31
Model Building.

Given a set of predictor variables, some fundamental questions are “Which variables are useful
in predicting the y-values?” and “Which are unnecessary?” Another way of looking at it is
which sets of variables make adequate models? We have two main techniques for model
building: best subsets, and stepwise procedures.

We will first look at the stepwise procedures.

Forward. With this technique, we begin by examining all regressions using just one variable
at a time. Then we pick the one variable with the best value of R>. We now consider all
models using the chosen variable and one other, again choosing the model with the highest R.
Caution: we do not include a variable if its #-test (Extra Sum of Squares test) isn’t significant.

Backward. With this technique, we start by including all the available independent variables
in the model. Then we successively drop variables whose t-test is insignificant, until all
remaining variables have significant values.

Forward Stepwise (Backward Stepwise): With these techniques, we begin just as in the
Forward (or Backward) technique. However, at every step we check to make sure all the
variables in the model are still significant (or no variable not included is significant). Those
that are not significant may be dropped from the model (or those that are significant can be
added to the model). The process then continues with this new set of variables as the starting
point.

We will use MINITAB today to explore these stepwise procedures to build a model. There is
no one technique that is best for all situations. Judgment on the part of the analyst is a
necessary part of model building. My personal preference is a backwards stepwise technique,
because including all variables to begin with is a stronger starting point than building up. The
danger is that the forward technique could possibly end up excluding a strong variable, due to
multicollinearity issues. The Best Subsets methods we will look at next should be used in
conjunction with the automatic search techniques we explored today.

Introduce model building using stepwise procedures.

Know how to use the forward selection technique, and its limitations. Beginning with one
variable models, the best single predictor is chosen. Using the best single predictor in each
model, the best two variable model is selected. This process is continues until no more
variables have significant #-values. Due to multicollinearity, important variables may not have
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been added to the final model, and variables included in the model may have insignificant
extra sum of squares z-values, when all other variables in the model are taken into effect.

Know how to use the backward elimination technique, and its limitations. Starting with
all predictor variables in the model, insignificantly contributing variables are removed, one by
one. When no more variables are insignificant, the procedure stops. Again, due to
multicollinearity, there is no assurance that the best set of variables is chosen. However, at
least no variables in the final model have insignificant #-values, so this procedure is perhaps
better than the forward procedure.

Know how to use the stepwise technique, and its limitations. Using a stepwise approach,
either forward or backward, each stage is followed by another look at the variables dropped or
added so far. In the forward stepwise procedure, if a previously added variable is now
marginally insignificant (small extra sum of squares) it is removed from the model. Similarly,
in the backward technique, if a previously discarded variable is now significant, it is added
back into the model. While stepwise procedures are better than forward or backward only
procedures, there is still no guarantee that the best subset of variables will be chosen.

Sections 9.4 to 9.6.
Day 32
Best Subsets.

While stepwise procedures lead us to reasonable models, they won’t always find all the good
models. For that we need another search technique. The most popular is the Best Subsets
routine. This method finds best models using a variety of goodness criteria. Before we
examine models with this technique, we will look at the various criteria available for assessing
model adequacy.

As a first option, we might think of using R>. But a little thought convinces us that this
measure won’t work, as it always increases when we add more variables. We have an
adjustment to R’ that should help, as it accounts for the number of predictors in the model.
Equation 9.4 in the text shows us that this method is equivalent to using MSE, which is an
estimate for the model error variance.

Another popular choice is Mallow’s C,. The details of this technique are beyond our
mathematical background, but the essence is that unbiased models have a value of C, near p.
Values above p indicate a model that is biased, indicating the mean values of the model are
different from the true means.

In practice, we often find conflicting models using our different criteria. Also, we must
closely examine the final model chosen, as there may be variables included that have small #-
values, for example.

Use the Best Subsets routine to build models.
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Know the criteria used to select models with Best Subsets. MINITAB uses two main
measures: Adjusted R’ and Mallow’s C,. Each measure slightly different features of the
model. Maximizing Adjusted R’ is equivalent to minimizing MSE, the estimated error
variance. Mallow’s C, measures the total “size” of all fitted values.

Know the limitations of the models selected with Best Subsets. Just as with stepwise
procedures, we have no guarantee that multicollinearity hasn’t created odd subsets of
variables. It is possible that a “best” subset has variables with small 7-values. The automatic
procedures are neither foolproof nor guaranteed. They must be used with caution and good
judgment.

Sections 10.1 to 10.2.
Day 33
Diagnostics.

We have several tools available to us to assess the adequacy of a multiple regression model.
Just as for simple linear regression, we will use the residuals from our model to assess model
adequacy. We begin by using some graphic methods to determine whether variables not
presently included in the model are needed. The main tool is the Added-Variable plot. This is
a view of the residuals formed when regressing our response variable on the variables already
in the model plotted against the residuals formed when regressing our new variable on the
variables already in the model. From such a plot we should be able to notice whether the new
variable helps our model, and also what the nature of the (marginal) relationship is. As the
authors point out, though, we must be very cautious using this tool, as it is highly dependent
on the current model being appropriate.

We finish today by looking at the residuals in more detail than we did on Day 8, where we
tried to write the residuals as linear combinations of the y-values. Using matrix notation, we
can accomplish this task with no trouble.

The key result is that the variance of the residuals themselves involves the hat matrix that we
saw on Day 16. Another feature to notice is the correlation among the residuals. However,
these correlations are generally small for large data sets.

If we standardize using the adjusted variances, we have internally studentized residuals.
Another modification is to use the residual for each point developed from the model excluding
just that data point. These are called deleted residuals, and standardizing them yields
studentized deleted residuals.

Introduce diagnostics for multiple regression models.

Added-Variable plots. Plotting the residuals from predicting the response variable in a
regression model versus the residuals from predicting a variable not included in the model
should give us information and insight about the marginal relationship to the new variable. If
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the plot shows any trend, we should consider including the new variable. The shape of the plot
will further guide us as to the relationship to be used. The example in the text on page 387
points out the danger of just looking at residuals. In that example, the residual plot makes the
relationship appear strongly quadratic, but using just a linear term explains the majority of the
error, without the unnecessary complication of a quadratic term.

Studentized residuals. By using matrix notation, we see that the residuals are a linear
combination of the x-values in our model, but they do not have the same variances. One
logical fix to this problem is to standardize (or studentize) the residuals by dividing by the
square root of the variance so that all residuals now have variance 1.

Studentized deleted residuals. One drawback to residuals is that they tend to be small when
a data point is far from the center of a data set. The outlying data point tends to pull the
regression surface close to the outlier. Therefore the residual will not be large, and the outlier
will remain undetected. One refinement to the residual calculation is to calculate a regression
fit without the potential outlier and see how close the point is to the fit. If we also standardize,
these residuals, they are called studentized deleted residuals. If the outlying data point
produces a large studentized deleted residual, then we have evidence that the point is
inconsistent with the other data, and worthy of further attention.

Section 10.3.
Day 34
X Outliers. Homework 5 due today.

The material from Day 33 can be used to detect outliers in the dependent variable, but caution
must be used. It is quite possible for an outlier to dominate the fitting process, if it is far from
other data points in the independent variables. It would be helpful if we had a measure of
how far data points are from each other in the x-values. Fortunately, the hat matrix again helps
us out.

We know that the variance of the residuals is derived from the diagonal elements of the hat
matrix. Thus when the variance is small, we have no difficulty estimating the response surface
at that point. This means the point is close to the center of the data, in a multivariate sense.
Conversely, when the variance is large, the y-values significantly control where the fitted value
falls, indicating a difficult point to estimate. This generally occurs on the edges of a data set.
Our measure for distance from the center is simply the diagonal elements from the hat matrix,
and we call this measure leverage.

I would like to explore the hat matrix today, along with various outliers to see how this
measure works in practice. Then we will try it on a complicated data set with several
independent variables. In all cases, we’re looking for extreme leverages.

Use the hat matrix to detect outliers in the independent variables.
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Hat Matrix. We have seen the hat matrix is H = X(XX)™'X’'. Because this is a function of X
alone, we can use it to describe the independent values in a data set. On Day 34 we explored
outliers in the y dimension. The hat matrix is used to detect outliers in the x dimensions.

Leverage. The diagonal elements of the hat matrix tell us important information about the
influence of the individual cases. Cases with large leverage generally are far from the center
of a data set, and cases with low leverage generally are near the center of a data set. We often
consider leverage to be large when it exceeds 2p/n, and we consider high leverage cases to be
influential points.

Section 10.4.
Day 35
Y Outliers.

So far, we have used only residuals to detect outliers in the dependent variable. But, as we
have seen, outliers in the independent variables yield very small residuals, due to their
leverage. We need some measures that detect outliers that are not solely based on residuals.
Today we will explore three candidates. Df Fits, Cook’s distance, and DF Betas.

DF Fits measures how different the fitted values are when a case is excluded from a model. If
a case has a large value for Df Fits, that means the model is quite different when including that
point in the analysis.

Cook’s distance is a combination of leverage and residuals. It measures the effect of a case not
just on its own residuals, but on all residuals simultaneously.

Df Betas is a measure of how much the coefficients in the model change when excluding a
particular data value. If Df Betas is large, we have evidence that the data point is far from the
other data points, either due to being an outlier in the independent variables or in the
dependent variable.

Explore further outlier detection statistics.

Df Fits. Df Fits is the difference in the fitted value from a regression using all cases and a
regression using all but the current case. If Df Fits is large for a particular data point, we have
some evidence that the point is different from the other points. The authors suggest
considering a case an outlier if the Df Fits values exceeds 1 from smaller data sets and 2\/p/n
for larger data sets. The formula for Df Fits is a product of the studentized deleted residual
and a factor involving leverage. High residuals and high leverage tend to make Df Fits larger.

Cook’s Distance. Df Fits measures how much one case affects the fitted value. Cook’s
distance measures how much all residuals have changed by deleting a single case. Again,
outliers will have large values of Cook’s distance. Our authors consider Cook’s distance large
if it exceeds the median from the F distribution with p and n — p degrees of freedom. The
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formula for Cook’s distance also shows it to be a product of the residual and a factor involving
leverage. As with Df Fits, high residuals and high leverage tend to make large Cook’s
distances.

Df Betas. Another way to describe the influence a case has on the regression fit is to see how
much the coefficients change when removing the case. Our authors consider Df Betas to be
large when they exceed 1 for smaller data sets and 2/Wn for larger data sets.

Sections 11.4 and 9.6.
Day 36
Trees.

Today we will look at fitting a model in a totally different way. Using each variable in turn,
we will split the data set into two groups, and measure the internal variance of the response
variable to see how effective such a split is. I will show you a spreadsheet approach to doing
tree regression. My formula will calculate the standard deviation of the two splits on the data,
for each possible split. Then we repeat on each subset we create. The end result is a series of
binary splits, which we organize into a tree. Working our way down the tree to a final node,
we classify each case and assign it a predicted value. Because we are not fitting an equation,
but creating a series of nodes or clusters, this technique is categorized as a non-parametric
procedure. The diagrams and charts on pages 454 and 455 demonstrate the tree creating
process.

Because we are looking so closely at our data, and not requiring any structure in a variable,
such as a linear equation or even any formula, we should be very careful not to overfit a model
to our data. The best way to avoid this is to keep a test data set aside, chosen randomly, from
which to verify our model. This is referred to as data splitting. We can measure how
effective a model is by first fitting it on the development cases or training sample and then
verifying its predictive ability on the other cases, the prediction set. We use MSPR,
comparable to MSE, to evaluate how good a model is.

Examine an alternate approach to making a model, using a classification tree.

Trees Structure. We can use a binary tree to classify cases into various nodes. Using an
appropriate splitting criterion, the data set is broken into two subgroups. Each subgroup is
further divided until a stopping criterion is met. The final set of subgroups constitutes the
classification scheme. Each subgroup’s average is then the assigned fitted value for all cases
in the subgroup. A goodness-of-fit, like MSE, can then be measured.

Splitting criterion. A reasonable criterion to use to split cases into subgroups is the overall
MSE. For two groups, this amounts to making the individual subgroup standard deviations as
small as possible. One drawback of using a classification scheme is the discrete nature of the
resulting rules. The obvious advantage is not having to specify the form of the model
beforehand.
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Data Splitting. With any form of model fitting, we would like a method to establish model
replicability. One way to accomplish this is to set aside some of the sample cases to be used as
a “verification” or “predication” data set. The remainder of the cases, the “training set”, are
used to develop the model, and then the predication data set is used to assess how well the
model performs. If too many variables are used, the model may be “overfit”, in which case the
model will not perform well using the prediction data set. If too few variables are used, the
model may not be very useful in practice. The art of model fitting is creating an effective
model somewhere between these two extremes.

Sections 13.1 to 13.2.
Day 37
Non-Linear Regression I.

Often we want to fit a model that is non-linear, because in nature, not every response surface is
linear or can be transformed into a linear surface. We will use a Taylor series expansion in our
estimates. Basically we are trying to find places where the derivatives are all simultaneously
zero. The spreadsheet I will use in class should do this for us, but I think it is important that
you know what steps the program takes.

As a first step into non-linear regression, I would like to take us through the steps we would
take if we were trying the straightforward calculus approach. You should understand where
our technique fails, and why we cannot derive a general solution. We will be able to produce a
few equations that are useful, but in general we will not be able to find a complete solution as
we were able to do with linear regression.

We have several options at this point. We can go ahead and numerically search for parameter
values that minimize the squared errors, but without using any calculus results. This is what
Excel does when we use the “optimal” solutions.

Another option we have is to use the Gauss-Newton method, which is a systematic search for
optimal answers, using more complicated calculus results. Specifically, the G-N method
resembles the Newton method you may have seen in introductory calculus. Using an iterative
approach, we calculate the derivative and project linearly to the “axis”, generating a new
update to the parameter estimates. Then we repeat the procedure, until we zero in on a place
where the estimates change very little, and hopefully we are at a relative minimum. However,
just as in the one-dimensional Newton method, we have no guarantee of that our relative
minimum is actually a global minimum.

Introduce non-linear regression and its complexities.

Forms of Non-Linear Models. As we have seen, the linear model can be written using matrix
algebra. Non-linear models cannot be written as matrix products. We can still try using
calculus methods on these models. However, the resulting systems of equations (the normal
equations) are not generally solvable with closed form methods.
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Least Squares Approach. By taking first derivatives of the non-linear model and setting
them to zero, we can set up the equations needed to find the critical point minimizing SSE.
However, as we have seen, these equations are generally not solvable in close form. If we are
able, we can iteratively find solutions.

Gauss-Newton Method. The Gauss-Newton method is a way to iteratively find a solution to
a non-linear regression model. The method requires a reasonable starting point, but once
begun, the method should converge to a solution relatively quickly.

Sections 13.3 to 13.4.
Day 38
Non-Linear Regression II.

While using the first option from Day 37 may be much simpler (we are after all using the
built-in search routines of Excel to “derive” the solutions) we do not have the luxury of
knowing the uncertainty in our estimates. The Gauss-Newton method has been studied
sufficiently that we now know techniques to estimate variances of our estimates. They are
based on large sample theory, so there is some caution to using it indiscriminately. See the
guidelines on pages 528 and 529. Essentially, E{g} =y and s°{g} = MSE(D'D)™".

Explore inference techniques for non-linear regression.

Error Variance Estimate. Because we are using a linear approximation to a multivariate
surface, we can use our usual matrix results to estimate the variance-covariance structure. The
estimates are unbiased, and with the variance estimates we can thus construct confidence
intervals and hypothesis tests.

Sections 14.2 to 14.3.
Day 39
Logistic Regression.

We have considered binary independent variables, but we have always had a continuous
response variable. Today we will explore a model for a binary response variable. Before we
try logistic regression, we will attempt to impose our usual linear model, and discover the
reasons it is inadequate.

The most common model used with the binary response variable is the logistic model, which
has two parameters. One controls the horizontal asymptote, and the other two control the

eXpo+ PXD) e will take a
1+exp(B, + B, X,)
few minutes to do some calculus on the function, then we will try our hand at fitting a model
numerically using our G-N spreadsheet.

steepness of the curve. The form of the model is E(Y;) =

Examine the case of a qualitative response variable, using the logistic function as a model.
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Binary Response Variable. When the response variable requires a yes/no answer, our usual
linear regression models are inadequate, as nothing in the model specification accounts for 0/1
y-values.

exp(By + B X))
1+exp(B, + B, X,)
this form, the main parameter of interest is f3,, which can be interpreted as the log of an odds
ratio.

Logistic Form. The usual form of the logistic function is E(Y;) =

. Using

Non-Linear Fit. Description.
Section 14.5.

Day 40
Logistic Inference. Homework 6 due today.

Our last topic will be the inferences we can make using logistic regression. We have two
options: the Wald test, which is based on the large sample theory of maximum likelihood
estimates and is used for single parameters at a time, and the Likelihood Ratio test which is
used for sets of variables.

Perform inference for logistic regression.

Intervals and Tests: Wald. The kind of test we performed for non-linear regression is also
referred to as the Wald test. We calculate the variance based on the non-linear estimates and
use them in #- or z- procedures.

Intervals and Tests: Likelihood Ratio. Using Extra Sums of Squares procedures we can test
whether several parameters are significant. The details of the test involve the ¥ distribution.

Chapters 9 to 11 and 13 to 14.

Day 41
Unit 3 Review.
Know everything.
Chapters 9 to 11 and 13 to 14.

Day 42

Exam 3. This last exam covers model building, advanced diagnostics, and non-linear
regression. Some of the questions may be multiple choice. Others may require you to show
your worked out solution. Don’t forget to review your class notes and these notes.
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