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Day By Day Notes for MATH 206 

Spring 2015 
Day 1 

Activity: Go over syllabus. Take roll. Functions activities. 

Goals: Review course objectives: summarize data with models and analyze how functions change. 

I have divided this course into three “units”. Unit 1 (Days 1 through 14) is about basic 
functions. Unit 2 (Days 15 through 32) is about derivatives and their uses. Unit 3 (Days 33 
through 56) is about integration and multi-variable functions. 

I believe to be successful in this course you must READ the text carefully, working many 
practice problems. Our activities in class will sometimes be unrelated to the homework you 
practice and/or turn in for the homework portion of your grade; instead they will be for 
understanding of the underlying principles. For example, on Day 16 you will draw sample 
graphs and derivatives, then try to reconstruct the original graph. This is something you 
would never do in practice, but which I think will demonstrate several lessons for us. In these 
notes, I will try to point out to you when we’re doing something to gain understanding, and 
when we’re doing something to gain skills. 

An important prerequisite for this course is an understanding of algebra. Algebra is the set of 
rules and procedures associated with basic arithmetic. We are all adept at arithmetic, so we 
should all be familiar with how algebra works. Unfortunately, the abstraction of arithmetic 
with letters instead of numbers confuses many of us. If you have weaker algebra skills, due 
to getting a lower grade in previous algebra classes, or not having had an algebra class for 
some time, you may want to consider taking a refresher course before tackling the more 
difficult topic of calculus. I have found in the past that students who are struggling with 
algebra concepts tend to be overwhelmed by the more rigorous calculus concepts. 
Incidentally, several years ago the Mathematics Department collected some data on student 
success in Math 204 and Math 206, and we found the grades of those students who 
completed Math 104 were a half grade point higher than those without Math 104 (GPA of 2.8 
for those with Math 104 and 2.3 for those without). 

Each semester, I am disappointed with the small number of students who come to me for 
help outside of class. I suspect some of you are embarrassed to seek help, or you may feel I 
will think less of you for not “getting it” on your own. Personally, I think that if you are 
struggling and cannot make sense of what we are doing, and don’t seek help, you are 
cheating yourself out of your own education. I am here to help you learn mathematics. Please 
ask questions when you have them; there is no such thing as a stupid question. Often other 
students have the same questions but are also too shy to ask them in class. If you are still too 
shy to ask questions in class, come to my office hours or make an appointment. You should 
also consider using the Math Tutor Lab, located on the first floor of Swart Hall. The lab is 
free to all students, and many students have benefitted from studying there and having a tutor 
handy for questions. 
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I believe you get out of something what you put into it. Very rarely will someone fail a class 
by attending every day, doing all the assignments, and working many practice problems; 
typically people fail by not applying themselves enough - either through missing classes, or 
by not allocating enough time for the material. Obviously I cannot tell you how much time to 
spend each week on this class; you must all find the right balance for you and your life’s 
priorities. One last piece of advice: don’t procrastinate. I believe mathematics is learned best 
by daily exposure. Cramming for exams may get you a passing grade, but you are only 
cheating yourself out of understanding and learning. 

Functions: 

Today we will begin by discussing functions. Quite simply, a function is a rule. From an 
input value, a function gives the output value. The set of possible inputs is called the 
domain, and the set of output values is called the range. The input value is sometimes called 
the independent value, and the output value the dependent value. One of the chief goals of 
mathematics is to model real world phenomena with functions. Therefore it is important for 
us to be familiar with their uses and roles. 

Throughout the course, we will try to look at functions from four different viewpoints. Data 
will be presented to us in tabular form, graphical form, algebraic form, or verbally. It will be 
up to us to determine the most appropriate method of describing the function. A common 
misconception that I hope to dispel is that equations are synonymous with functions. 
Equations are only one method of describing functions. Our text makes an honest effort to 
display functions for us in all four forms. 

Today and tomorrow I would like to explore functions graphically, verbally, and 
algebraically. We will begin with a discussion of a hypothetical flight between two cities. 
Then I will have you work in groups. 

In these notes, I will put the daily task in gray background. 

Activity 1: Graphical Description. 

The value of a car decreases, as the car gets older. We can think of the value of a car, 𝑉, in 
thousands of dollars, as a function of the age of a car, 𝑎, in years. In functional notation, we 
have 𝑉 = 𝑓(𝑎) (read “𝑉 equals 𝑓 of 𝑎). Using this notation, we mean that 𝑎 is the 
independent or input value and 𝑉 is the dependent or output value. 𝑓 is the function or rule 
used to find 𝑉 based on 𝑎. 

1) Draw a possible graph of 𝑉 versus 𝑎. You don’t need scales on the axes, but label each 
axis as 𝑉 or 𝑎. Traditionally we place the independent variable on the horizontal axis and the 
dependent variable on the vertical axis. 

2) What does the statement 𝑓 5 = 6 tell you about the value of the car? Be sure to use 
units for 5 and for 6. Label this as a point on your graph, and mark the 5 and the 6 on the 
appropriate axes. 

3) Put a vertical intercept of 15 on your graph of the function. Explain the meaning of this 
vertical intercept in terms of the value of the car. 
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4) Put a horizontal intercept of 10 on your graph of the function. Explain the meaning of this 
horizontal intercept in terms of the value of the car. 

5) Given the three points above, would it make sense to say the value of the car has 
depreciated at a constant rate? We will talk about this more when we discuss linear functions. 

Goals: (In these notes, I will summarize each day’s activity with a statement of goals for the day.) 

Introduce the course, and the idea of a function. 
Skills: (In these notes, each day I will identify skills I believe you should have after working the day’s 

activity, reading the appropriate sections of the text, and practicing exercises in the text. 

• Use the “Guess and Check” method of problem solving. This technique is the essence of 
the scientific method. There is nothing bad about guessing in order to learn. The better 
guessers, of course, tend to get quicker results, but if you have appropriate tools to evaluate 
your guesses, then even poor guesses can be refined adequately. By the way, your calculator 
in this class will essentially use this guess and check method to solve equations. It’s just that 
your calculator works a bit faster than you can. Another related idea is using test numbers to 
start a process. That is, perhaps making up a sample situation will help you see what is going 
on. I encourage you to use this approach often; it is the most basic lesson my advisor taught 
me in graduate school. He used to say, “Start with a simple example.” That often meant 
assuming some specific values for some variables, and working from there to understand the 
problem. 

• Physical modeling. Many times being stuck on a real world problem can be alleviated by 
modeling the situation with physical items or by other simulations. Of course many situations 
are infeasible; you can’t fly airplanes to simulate scheduling airline routes, but you can use 
appropriate diagrams or tokens representing airplanes. Sometimes actually physically 
representing something will get you over a mental block. 

Reading: (The reading mentioned in these notes refers to what reading you should do for the next 
day’s material.) 

 Section 1.1. Bring your calculator to class every day. It will be an invaluable tool. 

Day 2 

Activity: Today we continue to explore functions graphically, verbally, and algebraically. I will have 
you work in groups again. For each activity, when you come up with a solution, put it on the 
board and we will compare notes before class ends. 

Activity 1: Algebraic and Verbal Description. 

From a letter-sized 8.5” by 11” piece of cardstock you are to form a box to hold candy. Your 
design plan is to cut squares from each of the 4 corners and fold up the resulting flaps to form 
sides of the candy box. (The top will come from a separate piece of cardstock.) Your goal is 
to maximize the volume of your box. What size square should you cut from each corner? To 
begin this solution, I recommend trying some specific square sizes and calculating the 
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resulting volume. From a chart of such values, an answer should emerge. The pièce de 
résistance will be converting your table into a formula and graphing to find the optimal value. 

Activity 2: Graphical and Algebraic Description. 

With our calculators, we have the tools available to explore limits. Specifically, we hope to 
hone our intuition about this important topic in calculus. 

1) Calculate 1+ !
!

 for 𝑛 = 1, 10, 100, 1000, etc. What seems to be happening to the 
values? Are they approaching an upper bound, or limit? Can you explain (prove) it? 

2) Calculate 1+ !
!

!
 for 𝑛 = 1, 10, 100, 1000, etc. What seems to be happening to the 

values? Are they approaching a limit? This limit we see here is a very important limit in 
calculus and mathematics. We will encounter it and study it in more detail later. 

3) Consider this series of terms: 1, !
  !
, !
!
, !
!
, etc. Add the successive terms to get a new series 

of partial sums. That is, find 1, 1+ !
  !
, 1+ !

!
+ !

!
, 1+ !

!
+ !

!
+ !

!
, etc. What seems to be 

happening to this sum? 

4) Now try this series of terms and repeat the sums you did in 3): 1, !
  !
, !
!
, !
!
, etc. (These are 

successively smaller powers of two.) What seems to be happening to this sum? 

5) Using 𝑓 𝑥 = !!!
!!!!!!

, find the limits as you approach 𝑥   =   2 from the right and left. 
(Approaching from the right means using values just greater than 2 and approaching from the 
left means using values just smaller than 2.) Also find the value right at 𝑥   =   2. 

6) Repeat 5) using 𝑔 𝑥 = !!!!!!
!!!

. 

In these notes, I will put sections of computer commands in boxes, like this one. I’m 
actually hoping that you already are quite familiar with this machine, many of you having 
already taken Math 204. In these notes, I refer to the calculator as the TI-83, but the same 
commands apply to the TI-84. 

Y = is found on the top row of buttons, on the left. You enter equations into whichever Y-
variable you want to use. Be careful to enter what you want, that is, pay attention to 
parentheses, typos, etc.! Each Y-variable whose = sign is highlighted will be graphed 
when the GRAPH button is pressed. In addition, if any plots at the top of the display are 
highlighted, those too will be plotted, whether you intended them to be or not! 

GRAPH is found on the top row of buttons, on the right. This button toggles between the 
data / numerical entry screens and the graphing window. To leave the graphing 
window, press any key, or press QUIT, (found by pressing 2nd MODE). 
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WINDOW is found on the top row of buttons, second from the left. This opens the 
windows setting screen, which tells you the dimensions and characteristics of the 
current graphing window. We will mostly change only 4 items: Xmin, Xmax, Ymin, 
and Ymax. If you like, you may tinker with the other settings. 

TRACE is on the top row of buttons, second from the right. This key puts a cursor on the 
graphing window on one of your 𝑦-variables / functions. You may push right and left 
arrow to move sideways on the selected curve, or up and down arrow to select other 
curves (if you have entered more than one 𝑦-variable.) Be careful: TRACE is 
dependent on the current window settings. If you need specific values, after pressing 
TRACE, type the 𝑥-value you need evaluated. TRACE will calculate the functional 
value exactly. 

ZoomFit (Zoom 0) Many times, you do not know which is the best viewing window. If 
you first specify the horizontal endpoints in the WINDOW settings screen (Xmax and 
Xmin), then you can press ZoomFit (under ZOOM menu, item 0) to have the 
calculator find the appropriate Ymin and Ymax values. This function is quite handy; I 
use it a lot myself. 

ZStandard (Zoom 6) If you are in love with the numbers between – 10 and +10, you 
should use ZStandard in the ZOOM menu. Otherwise, you may find this key 
useless! 

Goals: Appreciate the dynamics of collaboration. Understand the different problem solving 
strategies. Explore some basic limits. 

Skills: 

• Collaboration. One of the biggest problems I see semester after semester with math students 
is their reluctance to talk about their math frustration. Talk about things with each other! If 
you are too timid to talk to me, (or if you have other reasons for not wanting to chat with me) 
at least talk to your peers. Sometimes simply saying something out loud will open up doors 
you might not have otherwise opened, or an offhand remark may inspire someone else’s 
imagination. Of course this doesn’t mean that one person in a group of problem solvers 
should do all the work; but even if only one group member “gets” a solution, the sharing is 
beneficial to all concerned. The sharer gets to really learn the concept as he/she is required to 
explain it; the others get to see a solution they missed. Ideally, everyone should be able to 
explain a group solution; until you can explain the solution, you haven’t quite understood the 
method. 

• Evaluate limits numerically and graphically. By using numbers closer and closer to the 
value in question, whether it is finite or infinite, your calculator or computer can help you to 
evaluate limits. There is a caution, however: you must still use your analytic skills to avoid 
being fooled. You may have observed this in Exercise 2 of Activity 2. Some limits are easy 
to evaluate (simply plug in and evaluate) while others are more complicated (the partial sums 
we saw in Exercises 3 and 4 of Activity 2 are often quite difficult to evaluate or to even 
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decide if they converge.) One of the “big ideas” in calculus is differentiation, and we need to 
be comfortable with limits to understand derivatives. Another of the “big ideas” in calculus is 
integration, and we need to understand limits such as partial sums to understand integrals. 

• Recognize the harmonic series. Even though terms in a series may be getting smaller and 
smaller, the partial sums may not converge to a finite number. The sequence in Exercise 3 of 
Activity 2 above is called the harmonic series and demonstrates this seeming paradox. Many 
partial sums will converge, though, as you saw in Exercise 4 of Activity 2, which is an 
example of a geometric series. 

• Understand the definition of the number 𝒆 (approximately 2.7182818). Exercise 2 of 
Activity 3 is the definition of the number 𝑒, which we will use again and again in calculus. 
Remember, though, 𝑒 is just a number, nothing more. Don’t be afraid of it! 

Reading: Section 1.2. 

Day 3 

Activity: Using the Olympic data, fit a regression line to predict the 2016 race results. Interpreting 
Rates of Change. 

Unit 1 is about building up a library of functions. To be an effective mathematical modeler, 
we must have a working knowledge of basic functions. These include linear functions, 
exponential functions, polynomials, and combinations of these. The simplest and most used 
is the linear function (it is the basis for the derivative we will master in Chapter 2). You 
should already know a lot about linear functions. Just to make sure we all have the same 
background, today we will explore linear functions in detail. 

To begin, I will list the useful forms for linear equations. 

1) Slope/Intercept form: 𝑦 = 𝑚𝑥 + 𝑏. In this form, 𝑚 is the slope and 𝑏 is the 𝑦-intercept. 

2) Point/Slope form: 𝑦 − 𝑦! = 𝑚(𝑥 − 𝑥!). In this form, 𝑚 is the slope, and (𝑥!,𝑦!) is an 
ordered pair on the line. 

3) Two Point form: 𝑦 − 𝑦! =
!!!!!
!!!!!

(𝑥 − 𝑥!). In this form, (𝑥!,𝑦!) and (𝑥!,𝑦!) are two sets 
of ordered pairs on the line. 

4) Standard form: 𝐴𝑥 + 𝐵𝑦 = 𝐶. 

I will use do the Celsius/Fahrenheit conversion in class to demonstrate using these forms. 

The chief technique for summarizing a linear relationship given data points on a scatter plot 
is Least Squares Linear Regression. This technique is also known as Least Squares 
Regression, Best Fit Regression, Linear Regression, etc. The important point is that we are 
going to describe the relationship with a straight line, so if the scatter plot shows some other 
shape, this technique will be inappropriate. Your tasks are to 1) come up with a line, either by 
hand or with technology, that “goes through” the data in some appropriate way, 2) to be able 
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to use this model to describe the relationship verbally, and 3) to predict numerically 𝑦-values 
for particular 𝑥-values of interest. 

Activity: Graphical description: Using linear regression. 

Begin by making a scatter plot of the race times. (Use STAT PLOT. See calculator 
commands below. Put the years in L1 and the times in L2.) If you want a rough guess for the 
slope of the best fitting line through the data, you can connect two points spaced far apart (I 
will show you the details in class, using the two-point form.) 

Next, use the TI-83’s regression features to calculate the best fit. The command is 
STAT CALC LinReg(ax+b), assuming the two lists are in L1 and L2. (L1 will be the 
horizontal variable, years in this case.) (For regression it is vital that you get the order of the 
variables correct; the idea here is that you are predicting the vertical variable from the known 
horizontal variable.) 

Interpret what your two regression coefficients mean. Make sure you have units attached to 
your numbers to help with the meanings. 

Have the calculator type this equation into your Y = menu (using 
VARS Statistics EQ RegEQ or use the commands below), and TRACE on the line to 
predict the future results. Specifically, see what your model says the 2012 times should have 
been and what the 2016 estimate is. Then compare to the actual 2012 time and check how 
predictive our model is. (You can also use the technique in the calculator commands section 
below.) 

Men’s and Women’s 100-meter dash winning Olympic times: 
1896 Thomas Burke, United States 12 sec   
1900 Francis W. Jarvis, United States 11.0 sec   
1904 Archie Hahn, United States 11.0 sec   
1908 Reginald Walker, South Africa 10.8 sec   
1912 Ralph Craig, United States 10.8 sec   
1920 Charles Paddock, United States 10.8 sec   
1924 Harold Abrahams, Great Britain 10.6 sec   
1928 Percy Williams, Canada 10.8 sec Elizabeth Robinson, United States 12.2 sec 
1932 Eddie Tolan, United States 10.3 sec Stella Walsh, Poland 11.9 sec 
1936 Jesse Owens, United States 10.3 sec Helen Stephens, United States 11.5 sec 
1948 Harrison Dillard, United States 10.3 sec Francina Blankers-Koen, Netherlands 11.9 sec 
1952 Lindy Remigino, United States 10.4 sec Marjorie, Jackson, Australia 11.5 sec 
1956 Bobby Morrow, United States 10.5 sec Betty Cuthbert, Australia 11.5 sec 
1960 Armin Hary, Germany 10.2 sec Wilma Rudolph, United States 11.0 sec 
1964 Bob Hayes, United States 10.0 sec Wyomia Tyus, United States 11.4 sec 
1968 Jim Hines, United States 9.95 sec Wyomia Tyus, United States 11.0 sec 
1972 Valery Borzov, USSR 10.14 sec Renate Stecher, E. Germany 11.07 sec 
1976 Hasely Crawford, Trinidad 10.06 sec Annegret Richter, W. Germany 11.08 sec 
1980 Allen Wells, Britain 10.25 sec Lyudmila Kondratyeva, USSR 11.6 sec 
1984 Carl Lewis, United States 9.99 sec Evelyn Ashford, United States 10.97 sec 
1988 Carl Lewis, United States 9.92 sec Florence Griffith-Joyner, United States 10.54 sec 
1992 Linford Christie, Great Britain 9.96 sec Gail Devers, United States 10.82 sec 
1996 Donovan Bailey, Canada 9.84 sec Gail Devers, United States 10.94 sec 
2000 Maurice Greene, United States 9.87 sec Marion Jones, United States 10.75 sec 
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2004 Justin Gatlin, United States 9.85 sec Yuliya Nesterenko, Belarus 10.93 sec 
2008 Usain Bolt, Jamaica 9.69 sec Shelly-ann Fraser, Jamaica 10.78 sec 
2012 Usain Bolt, Jamaica 9.63 sec Shelly-ann Fraser-Pryce, Jamaica 10.75 sec 

Men’s and Women’s 200-meter dash winning Olympic times: 
1900 Walter Tewksbury, United States 22.2 sec   
1904 Archie Hahn, United States 21.6 sec   
1908 Robert Kerr, Canada 22.6 sec   
1912 Ralph Craig, United States 21.7 sec   
1920 Allan Woodring, United States 22 sec   
1924 Jackson Sholz, United States 21.6 sec   
1928 Percy Williams, Canada 21.8 sec   
1932 Eddie Tolan, United States 21.2 sec   
1936 Jesse Owens, United States 20.7 sec   
1948 Mel Patton, United States 21.1 sec Francina Blankers-Koen, Netherlands 24.4 sec 
1952 Andrew Stanfield, United States 20.7 sec Marjorie, Jackson, Australia 23.7 sec 
1956 Bobby Morrow, United States 20.6 sec Betty Cuthbert, Australia 23.4 sec 
1960 Livio Berruti, Italy 20.5 sec Wilma Rudolph, United States 24.0 sec 
1964 Henry Carr, United States 20.3 sec Edith McGuire, United States 23.0 sec 
1968 Tommy Smith, United States 19.83 sec Irena Szewinska, Poland 22.5 sec 
1972 Valeri Borzov, USSR 20.00 sec Renate Stecher, E. Germany 22.40 sec 
1976 Donald Quarrie, Jamaica 20.23 sec Barbel Eckert, E. Germany 22.37 sec 
1980 Pietro Mennea, Italy 20.19 sec Barbel Wockel, E. Germany 22.03 sec 
1984 Carl Lewis, United States 19.80 sec Valerie Brisco-Hooks, United States 21.81 sec 
1988 Joe DeLoach, United States 19.75 sec Florence Griffith-Joyner, United States 21.34 sec 
1992 Mike Marsh, United States 20.01 sec Gwen Torrance, United States 21.81 sec 
1996 Michael Johnson, United States 19.32 sec Marie-Jose Perec, France 22.12 sec 
2000 Konstantinos Kenteris, Greece 20.09 sec Marion Jones, United States 21.84 sec 
2004 Shawn Crawford, United States 19.79 sec Veronica Campbell, Jamaica 22.05 sec 
2008 Usain Bolt, Jamaica 19.30 sec Veronica Campbell-Brown, Jamaica 21.74 sec 
2012 Usain Bolt, Jamaica 19.32 sec Allyson Felix, United States 21.88 sec 
 

STAT EDIT To enter a list of numbers into your calculator, instead of an equation, use the 
STAT menu. EDIT is the display that allows you to enter lists of numbers. You may 
have up to 3 lists displayed in the EDIT window. It is convenient to use the built-in 
lists L1 to L6, but actually any named lists may be used. You may want to refer to the 
calculator manual if you are interested in naming and saving your lists. (It might save 
you having to constantly re-enter data.) 

STAT PLOT 1 On Use this screen to designate the plot settings. You can have up to 
three plots on the screen at once. 

ZOOMStat (Zoom 9) To view a scatter plot of two lists, ZoomStat will create an 
appropriate viewing window. To use the TI-83 to effectively view scatter plots, I 
recommend turning off or de-selecting all Y-variables before pressing ZoomStat. 
There will be times however, when you will want to have both a scatter plot and an 
equation on the same viewing window, so it is not required to always de-select all 
functions. 

STAT CALC ???Reg After two lists of numbers have been entered, we can fit lines or 
curves to the data with the ???Reg commands. The TI-83 will fit 10 kinds of 
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equations; the most common one is LinReg. Before you use any of the fitting routines, 
perform the following: Press CATALOG (found by pressing 2nd 0), the letter D, down 
arrow eight times (to point to DiagnosticOn), and press ENTER twice. 

If you want to store your fitted equation in the Y= list directly from the regression 
command, do this: press STAT CALC ???Reg, then indicate the lists (variables) you 
want to use, separated by commas, then press VARS, right arrow, 1, and choose the 
desired Y-variable. Your fitted equation then appears in your list of Y-variables. An 
example command is: LinReg(ax+b) L1, L2, Y1. This will use L1 as the 𝑥-values, 
L2 as the 𝑦-values, and Y1 as the equation to store the fitted equation in. Be aware 
though that this command will overwrite anything you already had stored in Y1. Make 
sure important stuff in Y1 is saved elsewhere before you perform this command. 

Goals: Practice using regression with the TI-83. We want the regression equation, the regression line 
superimposed on the plot, and we want to be able to use the line to predict new values. 

Skills: 

• Fit a line to data. This may be as simple as “eyeballing” a straight line to a scatter plot. 
However, to be more precise, we will use least squares, STAT CALC LinReg(ax+b) on 
the TI-83, to calculate the coefficients, and VARS Statistics EQ RegEQ to type the 
equation in the Y = menu. You should also be able to sketch a line onto a scatter plot (by 
hand) by knowing the regression coefficients. 

• Interpret regression coefficients. Usually, we want to only interpret slope, and slope is best 
understood by examining the units involved, such as inches per year or miles per gallon, etc. 
Because slope can be thought of as “rise” over “run”, we are looking for the ratio of the units 
involved in our two variables. More precisely, the slope tells us the change in the response 
variable for a unit change in the explanatory variable. We don’t typically bother interpreting 
the intercept, as zero is often outside of the range of experimentation. 

• Estimate/predict new observations using the regression line. Once we have calculated a 
regression equation, we can use it to predict new responses. The easiest way to use the TI-83 
for this is to TRACE on the regression line. You may need to use up and down arrows to 
toggle back and forth from the plot to the line. You may also just use the equation itself by 
multiplying the new 𝑥-value by the slope and adding the intercept. (This is exactly what 
TRACE is doing.) Note: when using TRACE, and the 𝑥-value you want is currently outside 
the window settings (lower than Xmin or above Xmax) you must reset the window to 
include your 𝑥-value first. 

Reading: Section 1.3. 

Day 4 

Activity: Continue working with linear functions, described graphical and with a table of data. 
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Last time, we used the TI-83 to fit a straight line to the Olympic race data. Interpreting the 
slope was the most important part of describing that relationship. Today we will work more 
with linear functions, this time given verbally. The second activity today will be a preview of 
Chapter 2, as the rate of change of a function is an important concept in calculus. To find the 
rate of change of a function (or the average of the function) over an interval, we use the two-
point form. 

Activity 1: Algebraic description: Using verbal description. 

Taxicab rates. Given the following information on the side of a cab, develop an equation that 
will let you calculate the fare for any distance 𝑥. (To test your work, make sure your equation 
gives proper answers for known values. For example, you know the cost of a !

!
 of a mile ride 

is $3.10, so your equation should give 𝑓 !
!
= 3.10) Report your equation on the board. 

Info on the side of a cab: $3.10 FOR THE FIRST 1/8 OF A MILE OR FRACTION, 
PLUS $0.45 FOR EACH ADDITIONAL 1/8 OF A MILE OR FRACTION 
THEREOF. 

Activity 2: Tabular description: Using average rates of change. 

Congress created minimum wage in 1938. Has it been updated to reflect inflation fairly? 
From the following chart, for the adjusted minimum wage, calculate these rates of change: 
1938 to 1980, 1990 to 2000, and 2010 to 2014. Report your answers on the board. Note: In 
this chart, CPI=100 in 1982. In the last column, I have adjusted the figures to 2014 dollars. 

 

 

Year Minimum 
Wage 

CPI Adjusted 
Minimum 
Wage 

1938 $0.25 14.2 $4.12 
1950 $0.75 23.5 $7.46 
1960 $1.00 29.3 $7.98 
1970 $1.45 37.8 $8.97 
1980 $3.10 77.8 $9.32 
1985 $3.35 105.5 $7.43 
1990 $3.80 127.4 $6.98 
2000 $5.15 168.8 $7.14 
2010 $7.25 216.7 $7.83 
2014 $7.25 233.9 $7.25 

 

Goals: Understand the slope of the line is the Rate of Change of the function. 
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Skills: 

• Convert a verbal description into an equation. You should be able to recognize the ideas 
of slope / intercept or a description of several points on a line from a verbal description of a 
linear function. By recognizing which information is present, you then should be able to 
choose the proper form for the linear equation. 

• Be able to calculate average rates of change from tabular data. Given a table of values, 
you should be able to calculate various rates of change. The important concept is that the 
average rate of change is simply the slope from a line connecting two points. 

Reading: Section 1.4. 

Day 5 

Activity: Economics Examples. 

Several important business/economic applications use linear functions. Today we will look at 
profit, marginal costs, depreciation, and supply/demand curves. All of these topics can also 
be modeled with non-linear functions, so we will also encounter them later. For now, 
however, we will use only the linear functions. 

Profit: In business settings, profit is calculated by subtracting costs from revenue. Because 
revenue is usually the unit sales price times the number of items, we can model revenue as a 
linear function. 

Marginal Costs: The concept of marginal costs, revenues, etc. is a notion about the next 
item’s cost, revenue, etc. Recognizing the difference between a marginal cost and an average 
cost is critical to using derivatives appropriately later (Chapter 2). The marginal values we 
explore here can be viewed as the slope of a line connecting to adjacent quantities, spaced 
one unit apart. 

Depreciation: Items lose value over time, and we model this with different functions. With 
linear depreciation, we basically use a two-point form. Sometimes the two points used are the 
initial purchase price and the eventual salvage value. 

Supply/Demand Curves: Economists theorize that markets can be modeled with supply and 
demand curves, where the supply curve applies to producers of a commodity, and the 
demand curve applies to the consumers. Today and next time we will explore using linear 
functions with supply and demand theory. 

Today we will look at examples of each of the above topics from the exercises on pages 35 to 
38. For each exercise, put your solution on the board. 

Revenue, Cost, Profit using linear functions. Marginal Cost/Revenue. Problem 19, page 36. 

Linear Depreciation. Problem 23, page 36. 

Supply/Demand using curves. Problem 28, page 37. 



 
 

12 

Goals: Recognize the application of linear functions to economic examples. 

Skills: 

• Understand profit functions. Profit is defined as the difference between Revenue and Cost. 
We often phrase these functions in terms of quantity produced, 𝑞. Revenue as a function of 
quantity is usually linear. Cost as a function of quantity is usually not linear, but today we 
will assume it is to make some calculations. Marginal cost (revenue, profit) is the cost 
(revenue, profit) of the next item produced. Marginal values are often different, based on 
current production levels. We will explore marginal values more in Chapter 2 on derivatives. 

• Understand linear depreciation. In general, depreciation is the declining value of an item 
over time. The simplest form of depreciation is linear depreciation. The usual method of 
determining a linear equation for linear depreciation is to use the two-point form. 

• Understand supply and demand curves. Economic theory suggests that prices and 
quantities produced or desired are related. The demand curve suggests that as price 
increases, fewer people will buy an item. The supply curve suggests that as price increases, 
more items will be produced. These two curves can be modeled with linear functions, and 
economic theory says they intersect at equilibrium. Later, we will explore nonlinear supply 
and demand curves (Section 6.4, Day 42). 

Reading: Section 1.4. 

Day 6 

Activity: Supply and Demand using linear functions. 

One interesting modification we can make to the supply and demand setting is adding various 
kinds of taxes. The basic question is how taxation affects market equilibrium. For the 
problems today, consider various points of view. For example, when we charge the producer 
the tax on an item, as opposed to charging the consumer, the producer behaves as if the 
product sells for less than the cost the consumer pays. Therefore, in the supply equation we 
replace 𝑝 with 𝑝 − 𝑡, where 𝑡 is the amount taxed per item. With the new equation, we now 
have a new equilibrium, and new total profits, which we can now compare to the values 
before the tax. 

When the tax is imposed on the consumer, we have a similar situation. Because the added tax 
makes the cost of the item higher, the consumer behaves differently, according to the demand 
curve. Therefore, in the demand equation we replace 𝑝 with 𝑝(1+ 𝑟), where 𝑟  is the sales 
tax rate. With this new equation, we now have a new equilibrium, and new profits, which we 
can now compare to the values before the sales tax. 

Supply/Demand using lines. Effect of taxes. Problems 42 to 44, page 38. 

Goals: Continue working with supply and demand theory. 
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Skills: 

• Understand supply and demand curves. Economic theory suggests that prices and 
quantities produced or desired are related. The demand curve suggests that as price 
increases, fewer people will buy an item. The supply curve suggests that as price increases, 
more items will be produced. These two curves can be modeled with linear functions, and 
economic theory says they intersect at equilibrium. Later, we will explore non-linear supply 
and demand curves (Section 6.2, Day 40). 

Reading: Section 1.5. 

Day 7 

Activity: Exponential Functions. 

In linear functions, as the 𝑥-value increases one unit, the 𝑦-value increases 𝑚 units, where 𝑚 
is the slope of the line. This is additive growth. Another type of growth is multiplicative. In 
this kind of growth, when the 𝑥-value increases one unit, the 𝑦-value increases by a factor of 
𝑏. That is, instead of adding a fixed value, we multiply by a fixed value. This kind of 
growth is called exponential growth. 

Famous examples of exponential growth are populations. In class, I will look at the US 
population. In Presentation 1, you will select an individual state and model its growth, 
perhaps efficiently with exponential curves. (Some populations do not grow exponentially; 
you will have to explore the growth rates to see.) 

Today we will use the calculator to fit exponential curves to growth functions, like the US 
population over time. 

Activity: Modeling Population Growth. 

The population for the US is on page 213. (I also have the data for each of the 50 states and 
the US at the end of these notes.) Using ratios, find periods of time when the US population 
grew approximately exponentially. For your candidate eras, fit an exponential model using 
regression. 

STAT CALC ExpReg This regression function fits exponential curves. Again, the 𝑥-
variable comes first, then the 𝑦-variable. The third parameter, if used, is the Y-variable 
where the equation will be stored. Example: ExpReg(ax+b) L1, L2, Y1 uses data 
from lists L1 and L2 and stores the equation in Y1. 

Goals: Explore exponential growth. 

Skills: 

• Know the form of the exponential functions. Exponential equations have two parameters, a 
𝑦-intercept, and a base. The base is the multiplicative growth factor. The general equation is 
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𝑦 = 𝑎𝑏!. You should be familiar with the shape of the exponential graphs, as well as the 
domain and range. One important point on the graph is the 𝑦-intercept, at the point (0,𝑎). 

• Know the multiplicative nature of exponential functions. In contrast to linear functions 
growing at a steady rate over time, exponential functions grow at an increasing rate. The 
ratio of successive 𝑦-values for equally spaced 𝑥-values is a constant. This fact is especially 
useful for checking whether tabled values grow exponentially, but only if the table has 
equally spaced values of the independent variable. 

Reading: Sections 1.6. 

Day 8 

Activity: Explore the inverse of exponential growth, the logarithm. Homework 1 due today. 

To use an exponential growth function, we start with a known 𝑥-value, such as a time. The 
exponential formula then gives us the height of the function, or the 𝑦-value. In many 
situations, however, we want to work in the other direction. That is, we know the height of 
the function (the 𝑦-value), but want the time when that happens (or the 𝑥-value). This 
inverse is called a logarithmic function. I have found that many students are rather 
confused by logarithms. I will try to alleviate this confusion by emphasizing the fact that 
exponentials and logarithms belong together, much like squares and square roots do, or 
multiplication and division do. There are rules we must learn to do algebra with exponential 
functions however; for example when we solve for time in an exponential growth model. 

Today we will explore 𝑒, and the logarithm rules. 

Activity 1: Discovering 𝒆. 

As we saw on Day 2, the number 𝑒 is a limit of the calculation 1+ !
!

!
 as 𝑛 gets large. 

However, you need to be careful not to let your calculator fool you. For example, try values 
of 𝑛 from 10!" to 10!". With such large values for 𝑛, your calculator’s precision capabilities 
are exceeded. In your groups, try to come up with an explanation of what the calculator is 
having trouble with. 

Activity 2: Rules. 

Explore 𝑥!!, 𝑥(!!!), and 𝑥!", using test values. For example, verify that 2(!!!) = 2! !. 
Now look at ln  (𝑎!), ln(𝑎𝑏), and ln   !

!
. I will “prove” each of the results using algebra. 

Practice the rules using 1 to 16 on page 50. 

Goals: Understand the logarithmic functions. 

Skills: 

• Understand the relationship between exponential and logarithmic functions. 
Logarithmic functions are inverses to exponential functions. This means that we reverse the 
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𝑥- and 𝑦-vvalues and their associated facts. For example, the range of the exponential 
functions is only positive numbers; therefore the domain of the logarithmic functions is also 
only positive numbers. 

• Understand the definition of the number 𝒆 (approximately 2.7182818). Exercise 2 of 
Activity 2 from Day 2 is the definition of the number 𝑒, which we will use again and again in 
calculus. Remember, though, 𝑒 is just a number, nothing more. The importance of 𝑒 will 
become more clear when we explore derivative formulas in Chapter 3. 

• Know the exponential and logarithmic properties and be able to use them to solve 
equations. To solve equations for variables that appear in exponents, we need logarithmic 
functions. Therefore, you must know the properties. In particular, you must be comfortable 
using ln 𝐴𝐵 = ln 𝐴 + ln  (𝐵) and ln 𝐴! = 𝑝  ln  (𝐴). The second property is how we 
“rescue” a variable from the exponent. 

Reading: Section 1.7. 

Day 9 

Activity: Growth and Decay. 

Doubling time in an exponential function is the length of time it takes the 𝑦-value to double. 
To find it algebraically, suppose that a function has doubled between times 𝑥! and 𝑥!. So, 
𝑦! = 𝑎𝑏!! (because it is an exponential function) and 𝑦! = 2𝑦! because it has doubled. 
Putting these two expressions together gives 𝑦! = 𝑎𝑏!! = 2𝑦!=2  𝑎𝑏!!. If we now solve for 
the change in time, 𝑥! − 𝑥! we will have found the doubling time. 

Examples of exponential functions that are quite useful in business are the Present Value and 
Future Value formulas on page 56. You may have had some experience with these functions 
in the finance section of Math 204. We will explore them briefly as examples of exponential 
growth or decay. By solving the 𝐹𝑉 formula 𝐹𝑉 = 𝐵𝑒!" for 𝐵, we have the 𝑃𝑉 formula 
𝐵 = 𝑃𝑉 = 𝐹𝑉𝑒!!". The important distinction between these two formulas is that 𝐹𝑉 is larger 
than 𝑃𝑉. Therefore, if you are interested in calculating the Present Value of some investment, 
it will be smaller than the Future Value, and vice versa. 

There are several hallmarks of growth functions, and you should be able to tell growth from 
decay just by looking at the formula. If the base of an exponential function is greater than 1, 
we have a growth function, and vice versa. The tricky part of checking this feature out is the 
case where we have negative exponents. For example, 2!! = 2!! ! = !

!

!
= 0. 5!. So at 

first we might think this is growth function because 2 > 1, but after the algebra we see the 
negative exponent shows this is a decay function, because 0.5 < 1. 

Today we will practice using exponential and logarithmic functions. 

Activity 1: Doubling Times. Tripling Times. Etc. 

Using a graph, explore the relationship between doubling time and the base 𝑏. Choose a 
value for 𝑏; by guessing and checking, determine an interval where the 𝑦-value has doubled. 
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Calculate the doubling time by subtracting the two 𝑥-values. Repeat this calculation with a 
different interval where the 𝑦-value has doubled. You should notice an interesting fact. 

Repeat now for tripling time. Also, try a different value for the base. Make a conjecture about 
the effects of the base and the multiplier (doubling, tripling, etc.) on the times. Can you 
support your conclusions using algebra? 

Activity 2: Comparing compound interest rates. 

A stock has current value $150 per share and is expected to increase in value by 8% each 
year. In each case below, find a formula for the value of the stock 𝑡 years from now and 
calculate the value of the stock in 10 years:  

Interpret the 8% return as an annual (not continuous) rate. 

Interpret the 8% return compounded daily. 

Interpret the 8% return as a continuous annual rate. 

Now graph both functions on the same axes. What is the effect of continuous versus annual 
compounding? Write a one-paragraph summary. 

Activity 3: Using Present Value and Future Value formulas. 

Work on problem 43 pages 59-60. Hints: Treat each year as a separate investment. For 
example, the bonus is put into one account at the bank. Then after each year, that year’s 
salary is put into a separate account, etc. What is different about these accounts is the length 
of time they exist. Then add all the account balances together to get the total amount. 

Goals: Become familiar with manipulating exponential functions. 

Skills: 

• Know facts about Doubling Times. The most important fact about doubling time is that for 
any exponential function, it is the same value. That is, if an exponential function doubles 
from time 𝑡 = 3 to 𝑡 = 13, it will also double between 𝑡 = 20 to 𝑡 = 30. From our algebraic 
work on Activity 1, the doubling time is !"  (!)

!"  (!)
. 

• Be able to use Present Value and Future Value formulas in practical settings. The 
Present Value and Future Value formulas are examples of exponential functions. You should 
know facts about these formulas. For example, 𝐵 = 𝑃(1+ 𝑟)! is an exponential function in 
the variable 𝑡. The base is (1+ 𝑟), which is greater than one, so it is a growth function. 𝑃 is 
the 𝑦-intercept. 

Reading: Section 1.8. 

Day 10 

Activity: Transformations. 
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Our topic today is transformations, or creating new functions from old. In particular, we will 
explore shifts, stretches/compressions, and compositions. When a constant is added to the 
𝑦-value, we have a vertical shift. When a constant is added to the 𝑥-value, in parentheses, we 
have a horizontal shift. When the 𝑦-value is multiplied by a constant, we have a vertical 
stretch/compression. When the 𝑥-value is multiplied by a constant, we have a horizontal 
stretch/compression. Negative values cause reflections. 

Composed functions are vital to understanding the chain rule later in Chapter 3. Often, when 
we have a function inside parentheses, we have a composed function. The important skill 
with these composed functions is identifying the “inner” and “outer” functions. See class 
notes for examples. 

Activity: Using the “Rule of Four” with various composed functions. 

We will use all four approaches (verbal, graphical, algebraic, and tabular) to become familiar 
with composed functions and transformations. Verbal: problem 53 page 65. Graphical: 
problems 26-29 page 64. Algebraic: problem 58 page 82. Tabular: problem 11 page 63. 

Goals: Become familiar with transformations, especially composed functions. 

Skills: 

• Recognize the basic functions in complicated functions, especially the shifts and 
stretches. Adding and multiplying by constants creates shifts and stretches. You should be 
able to identify the basic function being manipulated, and also the shifts and stretches taking 
place. 

• Be able to “decompose” functions into the sequential steps. To use the chain rule to take 
derivatives, in Chapter 3, we need to be able to recognize the components in composed 
functions. The “inner” function usually is inside parentheses, and the “outer” function is the 
function that results if you replace the expression inside the parentheses with 𝑥. 

Reading: Section 1.9. 

Day 11 

Activity: Power functions and Polynomials. 

Power functions have the form 𝑦 = 𝑎𝑥!. Note the apparent similarity to exponentials. It is up 
to you to remember which is which. My personal reminder is that 𝑥! is a polynomial. You 
should be able to deal with fractional and negative exponents. Fractional exponents are 
radicals like square root (an exponent of 0.5 or !

!
) while negative exponents are reciprocals 

𝑥!! = !
!

. 

Polynomials are several power functions (with positive integer exponents) added together. 
The degree of the polynomial is the highest power of 𝑥. An 𝑛th degree polynomial can have 
up to 𝑛– 1 turning points. However, there are often fewer, such as with 𝑥!, which has none, 
but is still a 3rd degree polynomial. 
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Today we will play around with polynomials, a versatile class of functions. They can take on 
a variety of shapes, but we should understand their behavior before settling on them as final 
models to our data. 

Activity 1: Exploring polynomial turning points. 

Using trial and error, create a cubic that has 1) zero turning points 2) one turning point, and 
3) two turning points. Now try the same thing for a quartic (4th degree polynomial), with up 
to three turning points. In each case, explore the endpoint behavior by comparing the cubic or 
quartic to 𝑥! or 𝑥! with large 𝑥-values. The easiest way to accomplish this is to zoom out 
several times. 

After we study Chapter 3, we will be able to better qualify when a polynomial has 0, 1, 2, etc. 
turning points. 

Activity 2: Recognizing power functions versus exponentials. 

Values of three functions are given below (the numbers have been rounded off to two 
decimal places). Two are power functions and one is an exponential. Classify them and find 
potential equations. You may find the regression functions especially helpful here. But you 
can also use algebra as a solution method. Note: this problem is quite artificial; in practice, 
you would not have any knowledge of the data being generated by a particular equation. My 
only purpose for having you look at this data is to practice fitting curves with regression or 
algebra. 

x f(x) x g(x) x h(x) 
8.4 5.93 5 3.12 .6 3.24 
9 7.29 5.5 3.74 1.0 9.01 

9.6 8.85 6.0 4.49 1.4 17.66 
10.2 10.61 6.5 5.39 1.8 29.19 
10.8 12.60 7.0 6.47 2.2 43.61 
11.4 14.82 7.5 7.76 2.6 60.91 

 

Goals: Understand the features of polynomials and power functions. 
Skills:  

• Know about power functions and their attributes. Power functions have a number of 
features you should be aware of. Even-powered functions are non-negative and symmetric 
about 𝑥 = 0. Odd-powered functions are symmetric about the origin. The higher the power, 
the quicker the function goes to infinity. Certain fractional powers are only defined for 
positive 𝑥-values. Negative powers have a vertical asymptote at 𝑥 = 0. 

• Know the basic facts about polynomials. Polynomials are sums of power functions with 
positive integer exponents. The degree is the largest power of 𝑥. An 𝑛th degree polynomial 
can have up to 𝑛– 1 turning points. Endpoint behavior is determined by the term with the 
largest power. 
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Reading: Section 1.9. 

Day 12 

Activity: Polynomial endpoint behavior. Homework 2 due today. 

We should also understand the asymptotic behavior of polynomials. As 𝑥 gets large, only the 
term with the largest exponent matters. To see this, start with a polynomial that has turns and 
gradually increase the 𝑥-values until the graph looks like only the leading term. (See Activity 
1 from Day 11.) 

Activity: Explore the asymptotic dominance of exponentials to polynomials. 

No matter the degree, no matter the base of a growth model, an exponential function will be 
larger than a power function for large enough values of 𝑥. Graph 𝑦 = 1.5! and 𝑦 = 𝑥!" in 
the same viewing window. Zoom out sufficiently to verify that 1.5! > 𝑥!" for large enough 
𝑥. (If you are having trouble finding a window that verifies this, look at the answer below, in 
the reading.) 

When you finish the activity, you may use any extra time to work on your presentations for 
next time. 

Goals: Understand the comparison of exponential and polynomial growth. 

Skills: 

• Know the asymptotic dominance of exponentials over polynomials. Slowly growing 
exponentials may be dominated by polynomials for small 𝑥-values. However, for large 
enough 𝑥-values, exponentials (growth models) will always exceed polynomials. We call this 
“endpoint behavior” and it is important in analyzing functions qualitatively. 

Reading: Chapter 1. (Activity window: 𝑥: 100 to 130 𝑦: 0 to 2E21.) 

Day 13 

Activity: Presentation 1. 

Pick one of the 50 states. (The data is at the end of these notes.) Fit a model to its population 
growth. You have two goals: describe the growth, and predict the 2020 census. Compare 
linear, exponential, and polynomial models. Your presentation should convince us that you 
have chosen the most appropriate descriptive model and that your estimate for 2020 is 
believable. 

Reading: Chapter 1. 

Day 14 

Activity: Exam 1. 
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This first exam will cover the elementary functions of Chapter 1. Some of the questions may 
be multiple choice or T/F. Others may require you to show your worked out solution. 

Reading: Section 2.1. 

Day 15 

Activity: Instantaneous Change. 

Today we begin Chapter 2, the derivative. The derivative at a point is the slope of a line that 
is “parallel” to the curve at that spot. We will use a variety of techniques to approximate this 
slope, depending on the sort of information available to us. With equations, we can use more 
and more precise “two point” estimates, or slopes of secant lines; after Chapter 3, we will 
use formulas instead. If we have tabled data, we will not have precise estimates, as we can 
only “zoom in” as much as the table allows. If we have graphs, we will have to guess using a 
straightedge. In any case, we’re seeking the slope of the line, and therefore the units are a 
ratio, like miles per gallon, or feet per second, depending on the units used for the two 
variables. 

I have two activities today to explore instantaneous change, or derivative. Both relate to the 
fact that if we zoom in close enough on any continuously differentiable (or smoothly 
curving) function, the function will resemble a straight line. This phenomenon is called local 
linearity. 

Activity 1: Exploring Local Linearity. Using Tangent on the TI-83. 

Graph the function 𝑦 = 5 𝑥! − 𝑥  on the standard window. Zoom in on what you think is the 
curviest spot. Keep zooming in, about 8 times. Using two points on the “line”, estimate the 
equation of the line this zoomed-in function is close to. Graph your candidate in the same 
window. 

Now, at your selected 𝑥-value, use the Tangent function to get an equation of the line. 
Compare to your estimate from the “two point” method above. Note the Tangent function 
reports the entire equation of the tangent line; often we are only interested in the slope. 

Activity 2: Estimating the derivative at a point using secant lines. 

The derivative at a point can be approximated with an appropriately chosen secant line, a line 
between two well-chosen points on the curve. The following exercise should help you see 
what the calculator is doing when it calculates Tangent. 

Fill in the table, using 𝑥 = 7, and 𝑓 𝑥 = sin  (𝑥). Compare your answers with the others in 
your group. You may be getting different answers. If so, explain whose values are “correct”. 
(Note that the two 𝑦-values forming the numerator of the secant slope are 𝑦 = 𝑓(𝑥 − ℎ) and 
𝑦 = 𝑓(𝑥 + ℎ). Also note the 𝑥-values in these two points are 𝑥 − ℎ and 𝑥 + ℎ.) 
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ℎ 𝑓(𝑥 − ℎ) 𝑓(𝑥 + ℎ) Secant slope  
.1    
.01    
.001    

 

Now graph 𝑓 𝑥 = sin  (𝑥), making sure that your window includes the point where 𝑥 = 7. 
Use the DRAW - Tangent feature and draw a tangent line on your window. Now, use the 
dy/dx key on the CALC menu. How do these two techniques compare numerically? 
Graphically? Is one preferable over the other? 

Compare the definition of the derivative (page 131) with your calculations when filling out 
the table. Observe how the calculator computes derivative values with dy/dx. However, 
sometimes we cannot use our calculators (perhaps a parameter in the equation has an 
unknown or variable value) and we must use our algebra skills. Specifically, notice how our 
authors do algebraic derivatives on page 133. Don’t fear, though, you won’t be able to use 
this method for all problems, so we will need other tools (theorems) to help us, and when we 
actually calculate derivatives, we will use rules, not this definition. 

Zoom In (ZOOM 2) allows us to make the window “closer” by a factor of four. To use it, 
press ZOOM 2, then move the cursor to where you want the new window to be 
centered, then again press ENTER. 

The CALC menu (found by pressing 2nd TRACE) is most useful for calculus. The functions 
in this menu will allow us to find minimum and maximum values, find roots of 
equations, and perform the differentiation and integration activities of calculus. We will 
explore the syntax of these commands as we use them. Today we use dy/dx, which 
gives the slope of the tangent line at that point. 

The DRAW menu (found by pressing 2nd PRGM) will allow you to draw various lines and 
shapes on your window. In particular, we will want to draw tangent lines to curves. 
These tangent lines are straight lines that just touch a curve at a point, and are in some 
sense parallel to the curve at that point. DRAW - Tangent can be used in two ways: 
from an existing graph, or from the calculation screen. To use it for an existing graph in 
the graphing window, make sure you have the point of interest on-screen. Then press 
DRAW - Tangent. (Select the curve you want using up or down arrow, if you have 
more than one curve graphed.) Choose the 𝑥-value you want by using right or left 
arrow or by typing the 𝑥-value of interest. Finally press ENTER. The command syntax 
from the calculation screen is: DRAW – Tangent(Y#, x), where Y# is the curve of 
interest (such as Y1, or Y2, etc.) and x is the point at which you want to have the 
tangent line drawn.  

Goals: Understand that most functions we look at are “locally linear”. Understand slopes of secant 
lines as approximations for the slope of the tangent line. 
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Skills: 

• Understand the definition of derivative as the slope of the tangent line. The tangent line 
just touches a curve at the point of interest, and is in a loose sense parallel to the line. The 
slope of this line is the derivative at that point. Because it is the slope of a straight line, we 
know much about its features: it is a rate of change (rise over run), it is important to know the 
sign, etc. 

• Evaluate derivatives numerically. If your calculator can produce numerical values for a 
function (whether from a formula or just from some calculation), and the input values can be 
arbitrarily close together (that is what ℎ approaching zero means), then you can calculate a 
derivative numerically. You must calculate the slopes of some secant lines, and should 
evaluate several such slopes, making sure the limit in fact does exist. You must also realize 
you may have the only estimated the value of the derivative, and the exact value may only 
be close to the value you have. For more exact values, either use the algebraic approach, or 
look ahead to the theorems we will encounter in Chapter 3. 

• Evaluate derivatives graphically. If you can phrase a function in the form of an equation, 
then your graphing calculator can help you calculate a derivative at specific input values. The 
TI-83 can draw tangent lines at various places on a curve, and can calculate derivatives 
numerically as well, displayed on the graphing window. 

• Understand the definition of the derivative. You should be comfortable with the notion of 
a limit of slopes of secant line. You should also be comfortable with the equations 
∆!
∆!
= ! ! !!(!)

!!!
 and lim!→!

! !!! !!(!)
!

. (Note that the second equation is precisely the limit of 
slopes of secant line. See page 131.) This last expression differs slightly from Activity 2 
today; I personally think it makes more sense to center the secant line on the 𝑥-value instead 
of favoring the right side. It should make no difference in the limit, but practically we can 
only make ℎ so small using our TI-83. 

• Know several methods of estimating the derivative at a point. If we have a formula, we 
can use successively narrower intervals and use the “two point” form for a line to estimate a 
slope at a point. After Chapter 3, we may be able to use a formula approach. If we have 
tabular data, we can only estimate roughly the slope of the tangent line, using secant lines. If 
we have a graph, we can estimate slopes using a straightedge. 

Reading: Section 2.2. 

Day 16 

Activity: Interpreting the derivative function. 

The derivative is a slope of a function at a particular point. If we evaluate the derivative at 
many such 𝑥-values, and graph the result, we have the derivative function. This is a graph, 
just like the original function, but with different interpretations, as the 𝑦-values on the 
derivative graph are now the slopes from the original graph at each 𝑥-value, instead of the 
original functional values. Today we will begin by estimating the derivative function from 
tabular data. Then we will estimate functional values by knowing the derivative at a point. 
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Comment on notations: There are two main notations mathematicians have used to designate 
derivatives. I will use them interchangeably, without thinking, as it is second nature to me. 
These notations are: 

1) Prime notation. 𝑓′(𝑥). 

2) Leibniz notation. This notation reminds us that derivative is a ratio of differences, a 
slope. We use either ∆!

∆!
 or !"

!"
. One advantage of Leibniz notation is that we get to see the 

actual variables involved. Many times with the “f-prime” notation we just say “f-prime”. 
This isn’t very illuminative. What are the variables! Unfortunately, though, Leibniz 
notation doesn’t allow us to specify which 𝑥-value we’re talking about. In fact, to 
designate which 𝑥-value we’re using becomes quite cumbersome. Page 105 shows you 
the messiness. 

After the activities, we will look at a handy function on the calculator that will approximate 
the derivative at all 𝑥-values in the graphing window. See calculator commands below. 

Activity 1: Estimating the derivative using tabular data. 

Congress created minimum wage in 1938. Has it been updated to reflect inflation fairly? 
From the following chart, for the adjusted minimum wage, find the estimated derivative 
function. Note it will be difficult to estimate the slope at the beginning and end. You don’t 
have the luxury of points before and after. Discuss with your group members what is 
reasonable. (In this chart, CPI=100 in 1982. In the last column, I have adjusted the figures to 
2014 dollars.) 

Year Minimum 
Wage 

CPI Adjusted 
Minimum 
Wage 

1938 $0.25 14.2 $4.12 
1950 $0.75 23.5 $7.46 
1960 $1.00 29.3 $7.98 
1970 $1.45 37.8 $8.97 
1980 $3.10 77.8 $9.32 
1985 $3.35 105.5 $7.43 
1990 $3.80 127.4 $6.98 
2000 $5.15 168.8 $7.14 
2010 $7.25 216.7 $7.83 
2014 $7.25 233.9 $7.25 

 

Activity 2: Estimating using local linearity. 

Work on problem 2, parts d and e, on pages 129-130. These parts are about predicting new 
values using local linearity (or in this case extrapolating as 7 feet is beyond the available 
data). 

Goals: Seeing the derivative as a function. Estimating using local linearity. 
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Skills: 

• Evaluate derivatives from tabular data. When information is available in tabular form, we 
cannot “zoom in” to get a limit of secant slopes. We have only a few choices to estimate the 
derivative at each 𝑥-value. Generally, the best option is to average the secant slope before the 
point with the secant slope after the point. This is algebraically equivalent to finding the 
secant slope for the two points before and after. 

• Understand local linearity and how to use it estimate new values. If we are close enough 
to a point where we know the tangent slope, we can project the tangent line a short way and 
use it to estimate the value of the function at that new point. Caution: if the line is very 
“curvy” at this spot, our tangent line will poorly represent the function, so it is important to 
only use this method very close to the known derivative value. 

Reading: Section 2.3. 

Day 17 

Activity: Sketching the derivative function. 

Today we will try an exercise using graphs. 

After the activity, we will look at a handy function on the calculator that will approximate the 
derivative at all 𝑥-values in the graphing window. See calculator commands below. 

Activity: Estimating the derivative using a graph, and translating back. 

Each of you will sketch an arbitrary function on a piece of paper, labeling it “Original Curve” 
and putting your name on it. You will then pass your graph to someone else; they will graph 
the derivative function on a separate sheet of paper, labeled with “Derivative Curve for 
<insert name here>”. The person drawing the derivative will have to carefully estimate the 
slopes, so a scale is needed. I will show you in class the method I use to estimate these 
slopes. It involves placing a straight edge tangent to the curve, and finding the rise over run 
for that angle. This is repeated for a number of 𝑥-values. 

After sketching the derivative, the second person will pass the derivative graph to a third 
person (keep the original aside to compare with later); the third person will attempt to redraw 
the original graph based solely on the information from the derivative graph. Caution: this 
last part is tricky, as the starting location is not unique. You need to arbitrarily pick a 𝑦-
intercept to get started. From there, the derivative graph shows you how steep the graph 
needs to be at that point, so draw a little line segment with that slope. Move over slightly, and 
repeat the process. 

I will show you an example in class before you attempt this activity. If everyone has done the 
estimates correctly, the graph the third person draws should match the “Original Curve” 
graph. If there are discrepancies, the two sketchers should resolve them. It might be that the 
person drawing the derivative made poor estimates, or it may be that the third person didn’t 
translate the information well. 
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nDeriv( (MATH 8) will produce an estimate for the derivative at a point. The syntax is 
nDeriv( expression, variable, value). expression is the formula for the function. 
I will often use Y#, having already stored the function in a Y variable. variable is 
generally x, but you have some flexibility here in case you want another letter to be the 
variable. value is whatever number you’re interested in. When using nDeriv( to graph 
the entire derivative function in the graphing window, use x here instead. Example: 
nDeriv( Y1, x, x). 

Goals: Realize that the derivative can be viewed as a function. 
Skills: 

• Interpret the derivative verbally. For problems with a real-world setting, you should be 
able to use the value of the derivative at a point in an English sentence. For example, you 
may say, “At a production level of 1,000 car seats, we can expect profits to rise $10 for every 
additional car seat produced.” If you are having trouble with this verbal description of the 
derivative, one thing that may help is to pay close attention to the units involved, for instance 
dollars, or number of car seats produced. The examples in Section 2.3 should help you 
understand this verbal phrasing and interpretations of the derivative. 

• Know how to use the TI-83 to produce a graph of the estimated derivative of a formula. 
The command nDeriv( will estimate the derivative numerically with a small secant line. If 
we use this in the Y= window, we can graph the entire derivative function on the graphing 
window. The syntax for this is nDeriv( Y#, x, x). 

Reading: Section 2.4. 

Day 18 

Activity: Introduction to the Second Derivative. 

After discovering that the derivative is a function just like the original curve, there is no 
reason we cannot take the derivative of the derivative. This is called the second derivative, 
and often reflects useful information in real world problems. It is the change in the change 
of a function. The second derivative also can be thought of as the curvature of a function. 
You have probably seen this idea already in terms of concavity. In particular, if the second 
derivative is positive, we say we have positive concavity, and the other way around for 
negative values. 

When we look at the information from the first and second derivatives, there are four main 
situations of interest. The first derivative can be either positive or negative (or zero, but we 
will address that situation later) and the second derivative can be either positive or negative. 

1) Positive first derivative, positive second derivative: an increasing curve that is getting 
steeper. 



 
 

26 

2) Positive first, negative second: an increasing curve that is leveling off, approaching a 
peak or an asymptote. 

3) Negative first, positive second: a decreasing curve that is leveling off, approaching a 
minimum or an asymptote. 

4) Negative first, negative second: a decreasing curve that is falling faster. 

The Leibniz notation gets a little messy for second derivatives. The best way to phrase them 
is to use the prime notation, adding another prime for the second derivative. We usually say 
“f double prime”, referring to 𝑓"(𝑥). Note the messy Leibniz notation on page 112. 

One important application of the derivative is the idea of marginal analysis. In fact, the term 
marginal is synonymous with derivative. If either the cost function or the revenue function is 
a straight line, then the marginal cost or revenue is simply the slope of that line. We will look 
at this topic again in Section 4.4 (Day 28), after we explore the shortcut formulas to 
differentiation. 

Activity 1: Comparing a function to its first and second derivatives. 

Enter 𝑦 = 𝑥𝑒!!!, along with its first and second derivatives, in the Y= window. (See 
calculator commands below.) Select only the second derivative and use the window 
– 2 < 𝑥 < 2 and −2 < 𝑦 < 2. Make statements about the original function given what you 
see about the second derivative. Repeat using just the first derivative. Before graphing the 
original function, make a sketch that satisfies your statements. Then compare and see how 
close you were. If you are off in any of your statements, closely examine where you went 
wrong. 

Activity 2: Interpreting derivatives in a real world setting. 

Problem 50 page 127. Parts c and d are especially important; you must be able to convert the 
mathematical info into real world uses. In this case, the context of declining graduation rates 
is very important to school officials. 

There isn’t a separate command on the TI-83 for the second derivative; it is simply the 
derivative of the first derivative. The easiest way to get the calculator to estimate the 
second derivative function is to use these two Y= functions. Put your formula in Y1. In 
Y2, put nDeriv( Y1, x, x). In Y3, put nDeriv( Y2, x, x). 

Goals: Investigate the properties of the second derivative. 

Skills: 

• Be able to graph the second derivative on the TI-83. Using nDeriv( will produce a 
numerical derivative of a formula. If we repeat the command on the new formula, we will 
approximate the second derivative. I recommend keeping these two commands in Y2 and Y3 
for the rest of the semester. Put the formula you want to analyze in Y1. Use Y4 to Y0 for any 
other functions you want to graph. 
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• Understand what the second derivative says about the concavity of a function. The 
second derivative measures the concavity of a function. When it is positive, we know the 
original function is bowl-shaped (concave up); when it is negative, the original function is 
humped (concave down). When the second derivative is zero, it is neither bowl-shaped nor 
humped; rather it is very nearly linear at that point. Earlier we talked about local linearity; 
when the second derivative is zero, we might think of that point of the curve being even 
more locally linear! 

• Be able to convert second derivative facts into everyday English. Because the second 
derivative is a change in the first derivative, when we convert to an English description, we 
have to talk about the rate of change in the rate of change. For example, the speed of the car 
is increasing. Sometimes we have special words for these derivatives. With the motion of an 
object, the first derivative is speed and the second derivative is acceleration. 

Reading: Section 2.5. 

Day 19 

Activity: Economic Examples. 

Today we revisit the concepts of marginal cost and marginal revenue. The important notion 
is that we are talking about the cost or revenue of the next item only. Because quantity is our 
independent variable, this marginal cost is the same as the derivative of cost, expressed in 
units of dollars per item. Usually, quantity can only be expressed as integers, so to calculate 
marginal cost or revenue directly, we subtract two sequential values, for example the 
difference between the cost to make 10 items and 11 items represents the marginal cost of the 
10th item (or the 11th item). We can also approximate marginal cost using the derivative. 

Activity: Marginal cost and revenue. 

Problem 12 page 123. Estimate values for the marginal cost and revenue at both 50 and 90. 
Use these figures in your answers. 

Goals: See the correspondence between marginal cost and revenue and the derivative. 

Skills: 

• Realize that marginal costs/revenues/etc. are simply derivatives. Marginal costs, 
revenues, profit, etc. are important ideas in economics. Because the marginal cost is the cost 
of the next item, we are just talking about the slope of the tangent line, which is the 
derivative. Similarly for revenue, the derivative is the marginal revenue. We will explore 
these ideas more in Section 4.4 (Day 28). 

Reading: Section 3.1. 

Day 20 

Activity: Using Polynomial derivative formulas. Homework 3 due today. 
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A calculator approximation for the derivative function is convenient, but there will be times 
when we would rather have an exact formula. Fortunately, there are theorems (shortcuts) we 
can use. We won’t prove many of these results, but we will use them to produce formulas. 
Chapter 3, therefore, is only concerned with the algebraic point of view. When we have 
tabular data, graphs, or verbal descriptions, we cannot use these theorems. 

Several of the theorems apply to any function. Others are specific to particular forms. The 
general rules are the additive constant rule, the multiplicative constant rule, the 
addition/subtraction rule, the product rule, the quotient rule, and the chain rule. The specific 
functions are the power rule, the exponential rule, and the logarithmic rule. 

Additive constant rule: For this rule, we can make a quick argument to see the answer. 
What happens to the slope of a curve when we add a constant to it? Adding the same constant 
to every value simply lifts or lowers the entire curve that much, but doesn’t change the shape 
at all. Thus, the additive constant rule is that there is no change to the derivative. 

! ! ! !!
!"

= 𝑓′(𝑥). 

Multiplicative constant rule: It is a little harder to verbally prove this rule, but we can see 
for straight lines that multiplying by a constant increases the slope by that constant. With 
algebra, and the definition of derivative on page 131, we can discover that the derivative of a 
multiplied function is multiplied by the same amount. ! !" !

!"
= 𝑎𝑓′(𝑥). The result of this 

rule is that we factor out constants from our derivatives. 

Addition/subtraction rule: Again, using algebra is the easiest way to prove this rule, but we 
will accept the result on faith. (If you would like to see the algebra, see me after class.) 
Basically, the derivative of a sum is the sum of the derivatives. ! ! ! !!(!)

!"
= 𝑓! 𝑥 + 𝑔′(𝑥). 

This rule allows us to find the derivatives of polynomials. 

Power rule: To prove the power rule, we need the binomial theorem, and lots of algebra. 
Again, we will accept this result on faith. ! !!

!"
= 𝑛𝑥!!!. When we combine this rule with 

the multiplicative constant rule, we get the most common rule we’ll use: ! !"!

!"
= 𝑎𝑛𝑥!!!. 

We need to use this rule for reciprocals and radicals, as they can be written as exponents. 
This means you will have to recognize that square roots, and reciprocals, are power 
functions. We will do some examples in class. 

Activity: Try some basic expressions. 

For each of the following functions, plot the function in Y1, its nDeriv( in Y2, and your 
candidate answer in Y4. Using trace, check to see if your answer is right. (Compare Y2 to 
Y4.) 

1) 𝑦 = 3𝑥! 

2) 𝑦 = 3− 𝑥!.! 
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3) 𝑦 = 𝑥! − 2𝑥 + 𝑒 

4) 𝑦 = !
!!
+ 𝑥 − 4!  

Goals: Learn and use the basic rules for differentiation shortcuts. 

Skills: 

• Know the Rule for Sums. ! ! ! !!(!)
!"

= 𝑓! 𝑥 + 𝑔′(𝑥). 

• Know the Rule for Powers. ! !"!

!"
= 𝑎𝑛𝑥!!!. Note that 𝑛 can be any number, including 

fractions and negatives. 

• Realize that your nDeriv( function will verify that you have a correct derivative. By 
graphing the numerical derivative on your calculator (nDeriv), along with what you think the 
answer is, you can verify if your answer is correct. You can either compare the values for a 
few haphazardly chosen values, or you can graph their difference on a separate window. If 
they are the same, the difference should be zero (or very close but not exact due to rounding). 

Reading: Section 3.2. 

Day 21 

Activity: Using Exponential derivative formulas. 

Exponential rule: The exponential class of functions is quite unique. They are their own 
derivatives, multiplied by a constant. Activity 2 below will hopefully convince you of this. 
The required constant is the natural logarithm of the base. Using notation: ! !!

!"
= ln  (𝑎)𝑎!. 

When the base is 𝑒, ln 𝑒 = 1, so the rule is even simpler: ! !!

!"
= 𝑒!. One additional note: 

functions of the form 𝑒!"  can be thought of as 𝑒! ! so their derivatives have 𝑘 in front as a 
multiplier (ln 𝑒! = 𝑘). Example: ! !!!

!"
= 4𝑒!!. 

Logarithmic rule: The logarithmic rule is very simple: ! !"  (!)
!"

= !
!
. 

Activity 1: Discovering the unique character of the exponential functions. 

Graph 𝑦 = 2! and its derivative in the same window. What is the doubling time for 𝑦 = 2!? 
What is the doubling time for its derivative? These two doubling times imply an important 
result. Use this result to deduce the formula for the derivative of 𝑦 = 2!. 

Activity 2: Practice. 

For each of the following functions, plot the function in Y1, its nDeriv( in Y2, and your 
candidate answer in Y4. Using trace, or a table of values, check to see if your answer is right. 
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(Compare Y2 to Y4.) (Note in problem 2 you will have to make up values for 𝑘 and 𝑎. This 
sort of problem is why knowing algebra is still important.) 

1) 𝑦 = 3𝑒!! + 3ln  (𝑥) 

2) 𝑦 = 𝑘𝑒!!" 

Goals: Learn and use the basic rules for differentiation shortcuts. 

Skills: 

• Know the Rules for Exponential Functions. ! !!

!"
= ln  (𝑎)𝑎!. This rule is even simpler 

than the power rule, because exponential functions are their own derivatives, multiplied by a 
constant. With the power rule, you must decrease the power, which is more complicated. 

• Know the Rules for Logarithmic Functions. ! !"  (!)
!"

= !
!
. 

• Realize that your nDeriv( function will verify that you have a correct derivative. By 
graphing the numerical derivative on your calculator (nDeriv), along with what you think the 
answer is, you can verify if your answer is correct. You can either compare the values for a 
few haphazardly chosen values, or you can graph their difference on a separate window. If 
they are the same, the difference should be zero (or very close but not exact due to rounding). 

Reading: Section 3.3. 

Day 22 

Activity: Practicing the Chain Rule. 

Today we practice formulas. I will show you how the chain rule works. Then we will spend 
time practicing. 

The chain rule is used in composed functions. The idea is that you first must calculate one 
function’s result before you can finish the calculation. This first function, often called the 
“inner” function, can be substituted with another letter. But the key is that the “outer” 
function (what we do to the inner function’s result) must be evaluated at the inner function’s 
result. If we use the symbol 𝑥 for the input to the inner function, then we can’t use 𝑥 as the 
input to the outer function. We still do the derivative rules the same, we just evaluate the 
outer function at the inside function’s result, not at 𝑥. Hopefully, our class discussion will 
make this clearer. 

A note that seems to help people understand how to use the chain rule: ultimately, the chain 
rule is a product of the derivatives of the inner and outer functions. To use the rule 
effectively, you must be able to “decompose” the function into its parts. This is why 
understanding composed functions from Chapter 1 is critical to success in this section of the 
material. 
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Activity: Practicing the Chain Rule. 

Calculate the derivatives of the following functions. Then check your answers on your 
calculator using nDeriv. 

1) 𝑓 𝑥 = 𝑥! − 3𝑥! !. (Expand first, then use the power rule.) 

2) 𝑓 𝑥 = 𝑥! − 3𝑥! !. (Use the chain rule.) 

3) 𝑓 𝑥 = 𝑒 !!!!! . 

4) 𝑓 𝑥 = ln   𝑥 + 2 . (This should require two substitutions, or two uses of the chain rule.) 

Goals: Become familiar with the chain rule. 

Skills: 

• Know the Rule for Compositions (Chain Rule). !(!(! ! )
!"

= 𝑔! 𝑥 𝑓′(𝑔 𝑥 . You must 
understand composed functions to use this rule correctly. If you cannot identify what 𝑔(𝑥) is, 
you can’t get the correct derivative in front. You also need to be able to “replace” 𝑔(𝑥) with 
𝑥 in the 𝑓 function to get the proper derivative there, then again “replace” 𝑥 with 𝑔(𝑥). 

Reading: Section 3.4. 

Day 23 

Activity: Practicing the Product, and Quotient Rules. 

Today we continue practicing formulas. I will show you how the product and quotient rules 
work. Then we will spend time practicing. 

Activity: Practicing the Product and Quotient Rules. 

Calculate the derivatives of the following functions. Then check your answers on your 
calculator using nDeriv. 

1) 𝑓 𝑥 = (𝑥 + 3) 𝑥! − 3𝑥! . (Use the product rule.) 

2) 𝑓 𝑥 = (𝑥 + 3) 𝑥! − 3𝑥! . (Expand first, then use the power rule.) 

3) 𝑓 𝑥 = !!!!!!
!!!!

. 

4) 𝑓 𝑥 = !!!!!!
!!!! (!!!)

. 

Goals: Become familiar with the product and quotient rules. 



 
 

32 

Skills: 

• Know the Rule for Products. !(!(!)! ! )
!"

= 𝑓(𝑥)𝑔! 𝑥 + 𝑓′(𝑥)𝑔 𝑥 . It is important to note 
that the product rule is definitely not the product of the derivatives. That is actually closer to 
what the chain rule says. 

• Know the Rule for Quotients. 
! !(!)

!(!)

!"
= ! ! !! ! !! ! !! !

!(!) !
. To remember this rule, I’ve 

memorized the little ditty “Low dee high, less high dee low, square the bottom down below”. 
I’ve never forgotten the quotient rule because of it! Here, “dee high” means the derivative of 
the numerator and “dee low” means the derivative of the denominator. 

Reading: Chapter 3. 

Day 24 

Activity: Practicing the Derivative Formulas. 

Today we will practice using all the derivative formulas. 

Activity: Practicing the Rules. 

Calculate the derivatives of the following functions. Be sure to first decide whether the 
function requires the product rule, the chain rule, the addition rule, etc. Then check your 
answers on your calculator using nDeriv. 

1) 𝑓 𝑥 = 𝜋!𝑥! + 2𝑥 + 𝜋. 

2) 𝑓 𝑥 = 𝑒!!. 

3) 𝑓 𝑥 = 4𝑥! + 9. 

4) 𝑓 𝑥 = !!

!!
. 

Goals: Be adept at using the derivative formulas, especially problems involving the chain rule. 

Skills: 

• Identify the particular derivative rule needed for a problem. For many functions, only 
one of the derivative rules we have learned is actually used. (Of course, for some functions, 
more than one type of rule might be present.) Your task, then, is to be able to identify which 
particular rule or rules are needed. This skill will come with practice. It is up to you to put in 
the time so that you have the experience to choose the proper rules. There are a lot of 
problems on page 174 for you to practice on. (Skip any problems that refer to trigonometric 
functions, as we are not covering Section 3.5.) 

Reading: Section 4.1. 
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Day 25 

Activity: Exploring Local Extrema. 

Now that we have learned some formulas, we can make use of this information algebraically 
to find interesting places on curves. In particular, we can find peaks and valleys, or more 
formally, local maxima and minima (together called extrema). You may think at first with 
our powerful calculator that we don’t need algebra any more. While our machines help us in 
many circumstances, there is still a use for analytical results. For example, the calculator will 
help us find the turns in a polynomial, but only if we have a suitable window already. 
Algebraic results help us find the proper window. We will explore this in Activity 1. 

Another circumstance where algebra is necessary is when the parameters of a model are 
unspecified. Activity 2 today addresses this situation. 

Activity 1: Analyzing polynomial turns. 

Without doing calculus, try to find the part of this cubic where the critical points are. 
𝑓 𝑥 = 𝑥! − 63𝑥! + 1320𝑥. Now, find the critical points algebraically. Use the first 
derivative test to classify the critical points. Use the second derivative test to classify the 
critical points. 

Activity 2: Finding the conditions on a cubic so it has two turns. 

The general form for a cubic polynomial is 𝑓 𝑥 = 𝑎𝑥! + 𝑏𝑥! + 𝑐𝑥 + 𝑑. However, we 
already know that some cubics have no extrema, such as 𝑓 𝑥 = 𝑥!. What conditions on the 
parameters cause a cubic to have none, one, or two critical points? Hint: you will need to use 
the quadratic formula and note where the discriminant is negative, zero, or positive. 

Activity 3: Critical points of a non-polynomial. 

Without doing calculus, try to find the part of this function where the critical points are. 
𝑓 𝑥 = 𝑥𝑒!!. Now, find the critical points algebraically. Use the first derivative test to 
classify the critical points. Use the second derivative test to classify the critical points. 

Activity 4: Using a table of derivative values to find the maximum and minimum. 

Problem 30 page 182. 

Goals: Understand critical points, and how to classify them. 

Skills: 

• Know the definition of a Critical Point. Locations on the graph of a function where the 
derivative is either zero, or undefined, are critical points. Places where the slope equals zero 
might be maxima, minima, or neither. Important examples to keep in mind are the cubic 
power function, which has a critical point that is neither a maximum nor a minimum, and the 
absolute value function, which has a critical point with an undefined derivative. 
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• Be able to use the First and Second Derivative Tests for classifying extrema. The second 
derivative test is useful for determining whether a critical point is a maximum or a minimum. 
Simply evaluate the second derivative at the candidate point, and classify it as a maximum, a 
minimum, as it is negative or positive. If the second derivative is zero, we must resort to the 
first derivative test. To perform this test, we assess whether the first derivative is positive or 
negative around the critical point. If it is negative to the left and positive to the right, we have 
a minimum. If it is positive to the left and negative to the right, we have a maximum. If it is 
positive on both sides of a critical point or if it is negative on both sides of the critical point, 
then we have a “saddle point”, which is neither a maximum nor a minimum. 

Reading: Section 4.2. 

Day 26 

Activity: Exploring Inflection Points. Homework 4 due today. 

We have seen that the critical points of a function describe that function’s extrema, if any 
exist. The critical points of the derivative function represent places where the concavity of 
the original function changes sign. These points are called inflection points. We discover 
them in just the same way we found critical points, but working with the second derivative 
instead of the first derivative. Remember that it is possible for the second derivative to be 
zero and yet the concavity doesn’t change. The fourth degree power function is one example. 

Activity: Finding inflection points. 

Find inflection points for these functions. Remember, we don’t always have to use algebra to 
find our inflection points. 

1) 𝑓 𝑥 = !
!!

!!!! 

2) 𝑓 𝑥 = 𝑥 𝑥! + 𝑥 − 2  

3) 𝑓 𝑥 = (𝑥 + 𝜋)(𝑥 − 2)(𝑥! − 9) [Hint: Use the TI-83 instead of algebra.] 

4) 𝑓 𝑥 = ln 𝑥! + 2𝑒!  [Hint: Use the TI-83 instead of algebra.] 
Goals: Be able to find and interpret points of inflection. 

Skills: 

• Know the definition of Inflection Points. Points on a graph where the concavity changes 
sign are inflection points. We normally detect these points by examining where the second 
derivative is zero. However, we still must check on each side of such candidates, as simply 
equaling zero is not the same as changing sign. The best example to keep in mind of this 
phenomenon is 𝑦 = 𝑥!, which has no inflection points but does have a point where the 
second derivative equals zero (𝑥 = 0). 

Reading: Section 4.3. 
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Day 27 

Activity: Identifying Global Extrema. 

In addition to determining inflection points and critical points, we also want to determine 
global extrema. We have already talked about relative (or local) extrema. The overall 
maximum (or minimum) must be either one of the critical points, unbounded (such as with a 
vertical asymptote), or one of the endpoints (if the region is bounded). When you look for 
global extrema, I recommend making a list of the critical points, and endpoints. Then, after 
looking at the graph for places where the graph goes off to infinity in either direction, choose 
the largest for the maximum, and the smallest for the minimum. If the graph does go to 
infinity (or negative infinity), the best phrase to use is “There is no global maximum (or 
minimum).” 

Asymptotes are straight lines that a graph approaches arbitrarily closely. 𝑦 = !
!
 is an example 

with two asymptotes; there is a horizontal asymptote on the 𝑥-axis and a vertical asymptote 
on the 𝑦-axis. We will mostly be concerned with only horizontal and vertical asymptotes, but 
there could also be oblique (diagonal) asymptotes. Generally, when the denominator of a 
rational function is zero, we have a possible vertical asymptote. While these are not critical 
points, they are important to identify, as a function is unbounded at a vertical asymptote. 

Before beginning today’s activity, we can revisit our function from Day 2 and show how 
calculus solves the problem. Recall that the volume of the candy box is length times width 
time height, or 𝑓 𝑥 = 11− 2𝑥 8.5− 2𝑥 𝑥. To take this derivative, we probably should 
expand to get 𝑓 𝑥 = 11×8.5− 2𝑥 8.5 − 11 2𝑥 + −2𝑥 −2𝑥 𝑥 or 𝑓 𝑥 =
93.5− 39𝑥 + 4𝑥! 𝑥 = 93.5𝑥 − 39𝑥! + 4𝑥!. Now take the derivatives and solve for the 

critical point(s) and classify them. 

Activity 1: Describing the interesting points in a function. 

For each of the following functions, find all the interesting points/features, including critical 
points, extrema, inflection points, asymptotes, increasing and decreasing intervals, and 
positive and negative concavity. (Note: you found the inflection points on Day 26.) 

1) 𝑓 𝑥 = !
!!

!!!! 

2) 𝑓 𝑥 = 𝑥 𝑥! + 𝑥 − 2  

3) 𝑓 𝑥 = 𝑥 𝑥! + 𝑥 − 2 , 𝑥 ≥ 0 

4) 𝑓 𝑥 = (𝑥 + 𝜋)(𝑥 − 2)(𝑥! − 9) [Hint: Use the TI-83 instead of algebra.] 

5) 𝑓 𝑥 = ln 𝑥! + 2𝑒!  [Hint: Use the TI-83 instead of algebra.] 
Goals: Understand the difference between relative extrema and global extrema. 
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Skills: 

• Understand the overall strategy for analyzing and sketching functions. Our overall 
strategy is to find the critical points, the asymptotes (both vertical and horizontal), inflection 
points, intercepts, and any other easy-to-find points. You should be able to make both 
quantitative and qualitative descriptions of functions/graphs/equations. 

• Sketch graphs for equations with unspecified parameters. Using the skills acquired in 
classifying critical points, and using the skills for finding asymptotes, you should be able to 
sketch curves with unspecified parameters. You may need to be told whether the values of 
the coefficients are positive or negative, or over what range the coefficients can have values. 
For example, for parabolas we know the vertex has an 𝑥-coordinate of − !

!!
, where 

𝑦 = 𝑎𝑥! + 𝑏𝑥 + 𝑐. It may be difficult or impossible to graph the family of curves in general, 
as different coefficients may yield differently shaped curves, but in most cases you can 
construct an effective sketch. 

• Be able to find global extrema. To find the overall extrema (global extrema), we examine 
all the critical points, as well as any endpoints of the domain or any points with undefined 
derivative. Caution: only looking at the critical points will not be sufficient, as many 
functions have no global maximum or minimum due to the function’s values approaching 
infinity. 𝑦 = 𝑥! is a good example; there is one critical point, and it turns out to be a global 
minimum, but because both sides of the parabola rise without bound there is no global 
maximum. 

Reading: Section 4.4. 

Day 28 

Activity: Economic Examples. 

Today we return to economic applications. Recall that profit is the difference between 
revenue and cost. The first thing to notice is that the quantity that maximizes revenue is not 
the same quantity that maximizes the profit. We have several approaches to solving the 
maximum profit problem. We can simply calculate profit at all quantities and then choose the 
maximum. This can be tedious and time consuming. It might be much easier to use the 
calculus rules we have learned. Specifically, we know that when a derivative is zero, the 
function has a relative maximum or minimum. Because profit is a difference (𝜋 = 𝑅 − 𝐶), 
we can use the formulas from Chapter 3 to show that 𝜋′ = 𝑅′− 𝐶′. Now, if we set the 
derivative to zero and solve, we find 𝑅! − 𝐶! = 0 which implies that 𝑅! = 𝐶!. We use this 
strategy now to solve problems with only a graph, or a table of marginal values: find where 
marginal cost and marginal revenue are equal. We will practice with all three approaches 
(tabular, graphical, algebraic) today. 

Activity: Profit maximization. 

We will maximize profit using three sets of information: tabular, graphical, and algebraic. 

Tabular: problem 8 page 199. 
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Graphical: problem 13 page 200. 

Algebraic: problem 18 page 200. 

Goals: Understand some uses of the derivative in economics and business. 

Skills: 

• Know that maximum (or minimum) profit occurs where marginal cost equals marginal 
revenue. Because profit is cost subtracted from revenue, and because maximum profit occurs 
when its derivative is zero, we can conclude that profit is a maximum when marginal cost 
equals marginal revenue. In equation form: 𝜋 = 𝑅 − 𝐶, 𝜋′ = 𝑅′− 𝐶′, 𝑅! − 𝐶! = 0 implies 
𝑅! = 𝐶!. We don’t have a guarantee that such spots are maxima; we must check to make sure 
using the first derivative test, for example. 

Reading: Section 4.5. 

Day 29 

Activity: Economic Examples. 

Another example using derivatives in economics is average cost. By dividing the cost 
function by quantity, we have the formula for average cost. Using the quotient rule (which I 
will do in class), we discover that the minimum cost occurs where average cost equals 
marginal cost. If we have the formulas, this will just be an algebra problem. If we have 
graphs, it will be easier, as there is a handy geometric solution (see page 204 figure 4.59). 

Activity: Exploring Average Cost. 

Find the minimum average cost for the following problems. 

Graphical: problem 13 page 200. 

Algebraic: problem 18 page 201. 

Goals: Understand some uses of the derivative in economics and business. 

Skills: 

• Know that average cost is a minimum when average cost equals marginal cost. By using 
the quotient rule to find the derivative of the average cost, we find that average cost is 
minimized when average cost equals marginal cost. 

Reading: Sections 4.7 and 4.8. 

Day 30 

Activity: Logistic Growth, Surge Functions. Homework 5 due today. 
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We saw that some state populations grow nearly exponentially for periods of time. However, 
we also know that this exponential growth cannot occur forever, due to real world 
constraints, such as available space and resources. A more realistic model would account for 
this eventual upper bound. The logistic function is such a model. Today we will explore this 
function, by taking its derivatives, finding its interesting points, and sketching graphs for its 
various parameters. 

The surge function is often used to model drug concentration problems. We will explore this 
function today also. I will work out the derivatives and the graph during class; then you will 
practice yourself. 

Activity 1: Revisiting state populations. 

Pick one of the 50 states and fit a logistic regression curve using the TI-83. You will find the 
function in the STAT CALC menu of the calculator, at the bottom of the menu. There are 
some data sets for which the TI-83 will fail to find a good fit. I haven’t yet figured out when 
it will and will not work; it may have to do with the shape of the data not looking “logistic” 
enough. 

Activity 2: Surge function example. 

Problem 4, page 225. In addition to answering the questions asked, try to come up with 
estimates of the formulas. 

Goals: Examine two further examples of derivatives, the logistic function in population growth, and 
the surge function in drug concentrations. 

Skills: 

• Know the form of the logistic growth function. One formulation of the logistic function is 
𝑃 𝑡 = !

!!!!!!"
. This curve models population growth realistically. The domain is all real 

numbers, and the range is 0 to 𝐿. 

• Know facts about the logistic growth function. Through our calculus results, we find that 
there are no critical points, but there is an inflection point where 𝑃 = !

!
, also called the point 

of diminishing returns. 𝐿 is the carrying capacity, or the value of the horizontal asymptote 
as 𝑥 approaches infinity. 

• Know the form of the surge function. The surge function is 𝑦 = 𝑎𝑡𝑒!!". The domain is all 
positive real numbers, and the range is 0 to !

!"
. 

• Know facts about the surge function. The surge function begins at the origin, increases to a 
peak at 𝑥 = !

!
, then decreases to a horizontal asymptote at zero. The curve is often used to 

model drug concentration curves. 

Reading: Chapters 2, 3, and 4. 
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Day 31 

Activity: Presentation 2. 

Pick one of these functions (I will select groups in a random order to choose): 

1) 𝑦 = 𝑒!! − 𝑒!!!, 2) 𝑦 = 𝑥! + !
!
,  3) 𝑦 = 𝑥 ln 𝑥 + 𝑥, 4)  𝑦 = 𝑒!!!, 

5) 𝑦 = 2! + 2!!,  6) 𝑦 = ln  (1+ 𝑥!), 7) 𝑦 = 𝑥! − !
!
.  

Completely describe the interesting behavior, without graphing. Be sure to include critical 
points, inflection points, global extremes, endpoint behaviors, etc. After your description, 
show us a graph with an appropriate window that demonstrates the correctness of your 
analysis. 

Reading: Chapters 2, 3, and 4. 

Day 32 

Activity: Exam 2. 

This second exam is on Derivatives and Applications, Chapters 2, 3, and 4. Some of the 
questions might be multiple choice. Others will require you to show your worked out 
solution. 

Reading: Section 5.1. 

Day 33 

Activity: Introduction to Definite Integrals, using horse speeds. 

We will base our initial discussion on the formula “Distance equals speed times time”. In 
many cases, we will not know the speed at any arbitrary time, but at fixed intervals. Thus we 
must guess the values in between. We usually assume smoothness, and therefore pretend our 
functions are monotonic, or either only increasing or only decreasing. So, for each interval, 
we will have an upper and lower estimate of the distance covered, depending on whether we 
use the speed before or after the current time period. 

In the following data, we have the time of a horse race, and the speed of the horse at that 
moment. Use this information to estimate the total distance the horse has traveled. 

Time (sec) 0 30 60 90 120 
Speed (mph) 0 40 38 35 37 
 

Goals: Understand how distance can be estimated by knowing speed. 
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Skills: 

• Be able to estimate distance given speed. By knowing that “Distance equals speed times 
time”, we can calculate distance traveled over an interval with knowledge of the speed. This 
fact is the basis for all of our distance calculations, even for speeds that are not constant, as 
we shall see in the upcoming material. 

• Know there are upper and lower bounds for the distance estimate. Because speed 
changes over an interval, and we do not know the values in between two time points, we 
must make assumptions about how speed varies. Generally we will assume that the speed 
does not go above or below the two values that bracket a time interval. This leads to two 
estimates of distance in one time interval, an “upper”, and a “lower” estimate. We add all the 
lower estimates and all the upper estimates over an entire set of intervals to find the 
accumulated distance traveled. 

Reading: Section 5.2. 

Day 34 

Activity: Definite Integrals. 

How could we improve this estimate of distance? The most important conclusion we will 
make today is that the idea of distance turns out to be an area, not a length. It is critical that 
you understand this point in the upcoming material. 

We will typically talk about left and right sums, but these represent the lower and upper 
estimates only on monotone intervals. If the speed bounces up and down (as in the horse race 
example) then we will have to be careful about which estimate is the lower one and which is 
the upper one. 

To find the value of the definite integral, we take smaller and smaller intervals (if we can) 
and eventually the limit as this interval width approaches zero. These Riemann sums are 
mostly a conceptual notion; in practice we will use a different approach (antiderivatives in 
Section 6.2, Day 40). 

Activity 1: Did they hit the skunk? 

Jan and Pat are driving along a country road at 45 miles per hour (about 66 ft./sec). As the 
car rounds a curve, Jan sees a skunk in the middle of the road about 100 feet ahead. Jan 
immediately applies the brakes, and Pat notices that the speed of the car drops from 66 ft./sec 
to 51 ft./sec to 34 ft./sec to 0 ft./sec over the next three seconds. (Pat is a bit strange.) Does 
the car hit the skunk? 

Goals: Explore Reimann sums and definite integrals. 

Skills: 

• Realize the distance estimate can be viewed as an area under a curve. A very important 
observation to make about our distance calculations is that these distances can be thought of 



 
 

41 

as areas under the curve of the speed values. In general, when we have a rate function, and 
are interested in the cumulative change in the “distance” function for that rate, we will 
calculate an area. 

• Know that the definite integral is a limit of converging upper and lower estimates. If we 
have the luxury of “refining” our intervals (that is, making them narrower), then we can force 
the lower and upper estimates to converge to the true value of the distance traveled. The 
value to which the estimates converge is called the definite integral. 

• Realize that if the function isn’t monotone, the upper and lower estimates won’t be 
identical to right and left sums. If we use a graph and carefully keep track of which 
rectangle represents the lower estimate and which represents the upper estimate, then we see 
that “upper” and “lower” are also “right” and “left” only on an interval that is monotone 
(either always increasing or always decreasing). 

Reading: Section 5.3. 

Day 35 

Activity: Exploring Areas and Integrals. 

Obviously using smaller and smaller intervals is tedious work by hand. Fortunately we have 
a calculator command that saves us. fnInt( (MATH 9) accomplishes the task for us. Keep 
in mind that this command calculates the integral, not necessarily the area (due to the sign 
on the 𝑦-values). Note the implications: There is a difference between positive and negative 
values on the integral. If we want area we must keep track separately of regions above and 
below the 𝑥-axis. 

Activity: Finding areas under curves. 

For each of the following functions, find the area indicated. 

1) The area bounded between 𝑓 𝑥 = 𝑥 𝑥 − 1 ! + 1, 𝑦 = 0, 𝑥 = 0, and 𝑥 = 2. 

2) The area enclosed between 𝑔 𝑥 = 𝑥𝑒!! and ℎ 𝑥 = −𝑥𝑒!!, between 𝑥 = 0 and 𝑥 = 5. 

3) The area between the 𝑥-axis and 𝑓 𝑥 = !
(!!!)(!!!)

 between 𝑥 = 0 and 𝑥 = 2. Note: Make 

sure you know how to enter this formula correctly into the calculator. The point 1,− !
!

 
should be on the graph, not 1,−1.5 . 

In the same menu as nDeriv( is our chief tool for integration: fnInt( (MATH 9). The 
syntax is fnInt( expression, variable, start, end). expression is the formula for the 
derivative that we want the (signed) area underneath, variable is usually x, just as in 
nDeriv(, and start and end are the boundaries of the interval we want. We can also access 
this function from the CALC menu while on the graphing screen (CALC 7 or ∫f(x)dx). 
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Goals: Know the graphical interpretation of the definite integral. 
Skills: 

• Be able to use integrals to find areas bounded by curves. Areas can be calculated using 
integrals. However, you must be aware that integrals can be negative, if the function is 
negative. So to find areas, we must ensure that all functions are positive. If we have to, we 
multiply by −1 to make a function positive. This amounts to adding a minus sign to an 
integral to find the corresponding area. If we are dealing with the area between two curves, 
we subtract the lower curve from the higher curve, and the resulting integral is the area 
between them. If they cross and therefore switch roles, we reverse the subtraction. 

• Know the calculator commands to find areas. We can calculate definite integrals (or areas 
under curves) with fnInt( or ∫f(x)dx. fnInt( requires proper syntax while ∫f(x)dx 
requires the area be currently on the graphing window. 

Reading: Section 5.3. 

Day 36 

Activity: Exploring Areas and Integrals. 

We will continue calculating areas under curves today. 

Activity 1: Heart pumping rate. 

If 𝑟(𝑡) represents the rate at which the heart is pumping blood, in liters per second, and 𝑡 is 
time in seconds, give the units and meaning of the following integral: 𝑟 𝑡 𝑑𝑡!"

! . Even 
though we don’t know the equation of 𝑟(𝑡), graph a generic sketch of this integral. 

Activity 2: Growth of a population. 

Assume 𝑓 𝑡 = 60 𝑡 gives the rate of change of the population of a city, in people per year, 
at time 𝑡 years since 2000. If the population of the city is 5,000 people in 2000, what is the 
population in 2014? 

Goals: Know the graphical interpretation of the definite integral. 

Skills: 

• Know the calculator commands to find areas. We can calculate definite integrals (or areas 
under curves) with fnInt( or ∫f(x)dx. fnInt( requires proper syntax while ∫f(x)dx 
requires the area be currently on the graphing window. 

Reading: Section 5.4. 
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Day 37 

Activity: Interpret the Fundamental Theorem of Calculus in real world settings. Homework 6 due 
today. 

The Fundamental Theorem of Calculus lets us talk about accumulated change of a function 
using its derivative information. This is pretty much what we have been doing the last few 
sessions. Today we will work on some examples where we make sure we’re putting the 
information in context. I will start with a hypothetical bicycle trip (Problem 22 page 265). 
Then you will work on several problems yourself. 

Activity 1: Bicycle trip. 

Problem 23 page 265. 

Activity 2: Balloon flight. 

Problem 42 page 267. 

Goals: Using the Fundamental Theorem of Calculus in real world settings. 

Skills: 

• Know the Fundamental Theorem of Calculus. The Fundamental Theorem of Calculus 
relates integral and derivative as inverses. To find the integral, we use the derivative, but for 
a function we might not yet know. Fortunately, the integral can be interpreted as an area, so 
we don’t need to know the original function explicitly if we can approximate it using areas. 

Reading: Section 5.5. 

Day 38 

Activity: Interpret the Fundamental Theorem of Calculus in real world settings. 

The Fundamental Theorem of Calculus relates derivatives and integrals. To find the 
accumulated area under a curve, we can find the values directly with Riemann sums. The 
difference between two accumulated sums can be interpreted as the definite integral over an 
interval. 
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Activity: Theater line. 

 

Here is the graph of the rate (in arrivals per hour) at which patrons arrive at the theater to get 
rush seats for the evening performance. The first people arrive at 8 a.m. and the ticket 
windows open at 9 a.m. Suppose that once the windows open, people can be served at an 
average rate of 200 per hour. Use the graph to approximate: 

1) The length of the line at 9 a.m. when the windows open. 

2) The length of the line at 10 a.m. and 11 a.m. 

3) The rate at which the line is growing at 10 a.m. 

4) The time when the line is longest. 

5) The length of time a person who arrives at 9 a.m. has to stand in line. 

6) The time the line disappears. 

7) Suppose you were given a formula for r in terms of t. Explain how you would answer the 
above. 

Goals: Using the Fundamental Theorem of Calculus in real world settings. 

Skills: 

• Be able to approximate areas under curves using graphs. In the examples today we 
calculated areas given graphs. This is usually best accomplished with a suitable grid on graph 
paper, and counting boxes. But if other approximations work (like triangles) you should use 
them. The important part is being able to find a good answer for how much area is bounded 
by the curve. Later (Chapter 6) we will focus more on formulas. 

Reading: Section 6.1. 
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Day 39 

Activity: Analyzing Antiderivatives. 

We will revisit an activity from Chapter 2 (Day 17), and notice (hopefully) how much 
simpler the last part is now that we know about integration. 

Activity 2: Estimating the derivative using a graph, and translating back. 

Our next activity is a repeat of what we did on Day 17. It will take less time than before, 
hopefully. 

Each of you will sketch an arbitrary function on a piece of paper, labeling it “Original Curve” 
and putting your name on it. You will then pass your graph to someone else; they will graph 
the derivative function on a separate sheet of paper, labeled with “Derivative Curve for 
<insert name here>”. The person drawing the derivative will have to carefully estimate the 
slopes, so a scale is needed. Finally, the second person will pass the derivative graph to a 
third person (keep the original aside to compare with later); the third person will attempt to 
redraw the original graph based solely on the information from the derivative graph. Caution: 
this last part is tricky. 

Note that the last part isn’t nearly as tricky now as it was on Day 17; we now have the FTC 
to guide us in exactly how much to make the original graph rise or fall. 

Goals: Be able to draw an antiderivative from a graph. 

Skills: 

• Be able to draw an antiderivative given a derivative graph. On Day 17 it was difficult 
during our exercise to reconstruct the original function from the derivative graph, because we 
didn’t know how much to increase or decrease the function just knowing the derivative. 
Now, after studying the FTC, we know the area is the important missing factor. With this 
knowledge, you should now be able to draw accurate antiderivatives, as this is really what 
they are. 

Reading: Section 6.2. 

Day 40 

Activity: Antiderivatives. 

We have explored how to interpret definite integrals. The techniques we’ve been using 
involve estimating areas under curves. The Fundamental Theorem of Calculus guided us, but 
it also shows us another approach to the solution, if we have a formula for the rate function 
(the derivative). The FTC says all we have to do is come up with a formula whose derivative 
is the formula we’ve started with. This sounds easier than it often is. 

However, when such a formula does exist, the solution to a definite integral is then simply 
the difference of two values in this new function, which, because it is an inverse function, is 
called an antiderivative. It is important to note right away that antiderivatives are not unique 
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functions. We know from Chapter 3 that when we add a constant to a function we don’t 
change the derivative at all. So there are many antiderivatives to any problem, but they only 
differ by adding a different constant. 

To find antiderivatives we need to recognize a few features of the rules we learned in Chapter 
3. First, derivatives add together, so we can work on each part in a sum separately. Second, 
derivatives of power functions are themselves power functions. So we just need to work 
backwards. Exponential functions are also their own derivatives. Composed functions are 
another matter. They may or may not have simple solutions. We will use substitution to see if 
we can discover the answers to them. 

Activity: Working “backwards”. 

Work as many of the problems on page 304 as you can. 

Goals: Realize that antiderivatives are the inverses of derivatives. 

Skills: 

• Realize that an antiderivative is a function whose derivative is the original expression. 
The Fundamental Theorem of Calculus shows us that accumulated change in a function is an 
area under the derivative curve. Conversely, if we know the original function’s formula, we 
can simply subtract two values to find the definite integral. 

• Know how to find antiderivatives of simple functions. Power functions, exponential 
functions, constants, and the reciprocal function !

!
 are all simple functions that have simple 

antiderivatives. Section 6.2 enumerates them in the various boxed formulas. 

Reading: Section 6.3. 

Day 41 

Activity: Analyzing Antiderivatives. 

Definite integrals, as we have seen, are specific areas under a curve. If we have a formula for 
the derivative that we can find an antiderivative for, we can use the Fundamental Theorem of 
Calculus to find the area exactly. Today we will do work very similar to yesterday’s work, 
but we will move on to do the actual subtractions specified by the FTC. 

In addition to finite integrals, we can also try our hand at improper integrals, or those with 
infinity in either integrand. These problems will be solved with limits, and therefore may be 
tricky to conclude convergence with (recall the harmonic series of Day 2). However, the FTC 
saves us, if we are able to evaluate the antiderivative as 𝑥 approaches infinity. 

Activity: Evaluating definite integrals exactly using the FTC. 

For each of the following functions, find an antiderivative. Then, evaluate the definite 
integral using your calculator (fnInt), and by using the Fundamental Theorem of Calculus. 
Compare answers. Which one is “right” and which one is only an approximation? 
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1) 𝑥(𝑥 + 1)!"𝑑𝑥. Integrate from 0 to 10.  

2) !
!!
𝑑𝑥!

! . Note: you will have to decide how to “get” your calculator to do infinity. 

3) !
!
𝑑𝑥!

! . This integral is one way to prove that the harmonic series diverges. 

Goals: Calculate and interpret integrals using antiderivatives. 
Skills: 

• Evaluate definite integrals using both antiderivatives and the TI-83. The definite integral 
can be calculated with antiderivatives (using the Fundamental Theorem of Calculus) or by 
numerical methods (using fnInt on the TI-83). You can also use CALC 7 (∫f(x)dx) on the 
graphing window. 

• Be able to calculate an improper integral. An improper integral involves infinity as one of 
the integrands. Therefore, to evaluate an improper integral exactly, we must use the FTC and 
some limit ideas. 

Reading: Section 6.4. 

Day 42 

Activity: Examples using integrals. Homework 7 due today. 

Consumer surplus is the amount of money not spent that would have been spent at higher 
prices. This is different for each consumer, as there are many different “demand” levels. So, 
for each price level, we determine how much money was “saved” from the actual price 
versus the willing price, as determined by the demand curve, and total this over all prices 
(down to the current price). Similarly, we can figure a producer surplus, but using the 
supply curve. Again the reasoning is that if the price were lower, fewer items would be made, 
and therefore sold. It is important to note that at equilibrium, both producers and consumers 
are “gaining” from the transaction. 

Geometrically, the consumer surplus is the area bounded by the price (horizontal line) and 
the demand curve (integral area if the demand curve isn’t linear). The producer surplus is the 
area below the price line bounded by the supply curve. 

The interesting work comes when we (perhaps the government) impose non-equilibrium 
prices. What effect does this have on the economic interpretations? We will explore this idea 
in Activity 2. In class, I will work on Problem 8 page 310. 

Activity: Consumer and Producer surplus. 

Problem 7, page 310. I recommend graphing the curves in addition to using fnInt(. 

Now suppose a price greater than equilibrium is imposed. (Invent one.) Calculate the change 
in the two surpluses. 
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Now suppose a price lower than equilibrium is imposed. (Invent one.) Calculate the change 
in the two surpluses. 

Goals: Use integrals in economics settings. 

Skills: 

• Understand the Consumer and Produce Surplus examples. Equilibrium price is lower 
than many consumers are willing to pay. The difference between what they would have paid 
and what they are paying is called the consumer surplus. Similarly, the equilibrium price is 
higher than many producers are willing to produce. The difference in the equilibrium price 
and the supplier’s willing price is the producer surplus. 

Reading: Section 6.5. 

Day 43 

Activity: Present and Future Values of income streams. 

Any process that can be summed can be approximated with an integral. The idea behind the 
Reimann sums that form our integrals is the shrinking rectangle widths. An analogous 
situation is the compounding period for interest in annuities. We have looked at continuous 
compounding, and this corresponds to the definite integral. Today we will look at adding up 
a continuous income stream. 

Activity: Understanding continuous income streams. 

Compare several income streams, adding up the total income each time. Then calculate the 
definite integral, using the continuous compound interest formula. 

Goals: Use integrals in economics settings. 

Skills: 

• Know how to calculate the total income given an income stream. Because the definite 
integral is akin to a sum, we can use it to find sums with continuous compound interest 
problems. 

Reading: Section 6.6. 

Day 44 

Activity: Integration by Substitution. 

Composed functions do not have simple antiderivatives. We will use substitution to see if we 
can discover their antiderivatives. But substitution doesn’t always work; we must have 
functions that match the chain rule exactly. Substitution gives us a chance at least. It might 
require trial and error to find the right substitution to make. The strategy is to try 𝑤 as an 
“inner” function; then 𝑑𝑤 = 𝑤′𝑑𝑥. Replacing what we can, we see if we have made the 
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problem into something simpler and solvable. I will work problems in class to show you the 
gist of it. Then you will practice with the composed functions. 

Activity: Integration by Substitution. 

Work as many of the problems on page 320 as you can. We will continue on the next day 
also. 

Goals: Know how to do integration by substitution. 

Skills: 

• Know how to find antiderivatives using substitution. The antiderivatives for composed 
functions can sometimes be found using substitution. This technique only works if the 
derivative of the proposed substitution appears in the formula in just the right way. If the 
substitution is chosen well, then the problem after substitution will be of a simpler nature. 

Reading: Section 6.6. 

Day 45 

Activity: Further practice with substitution. 

We will use this day as a chance to review all of our integration theorems and techniques. 

Activity: 

Work as many of the problems on page 320 as you can. 

Goals: Know how to do integration by substitution. 

Skills: 

• Know how to find antiderivatives using substitution. The antiderivatives for composed 
functions can sometimes be found using substitution. This technique only works if the 
derivative of the proposed substitution appears in the formula in just the right way. If the 
substitution is chosen well, then the problem after substitution will be of a simpler nature. 

Reading: Section 8.1. 

Day 46 

Activity: Introduction to Multivariate Functions. 

The real world is rarely explained by simple one-variable functions. Everything depends on 
everything else. The complexity is sometimes daunting. However, we can try to model things 
with mathematical formulas, and these often prove useful. For example, we know that the 
amount of money in a bank account can be represented by the formula 𝐵 = 𝑃𝑒!". We can 
view 𝐵 as a function of three variables: 𝑃, 𝑟, and 𝑡. Of course, in the real world the account 
balance won’t always be predicted by this formula unless the account is left completely 
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alone, and the bank doesn’t close the account. In Activity 1, we will explore how to describe 
a multi-variable function with a table. 

After you work on your activity today, I will explore 𝑧 = 𝑥𝑦! + 𝑥!. This function is tougher 
than the one you’re working on, but we should see all the same issues. 

Activity: Describing a multivariate function with a table. 

In your groups, create tables of values for this two-variable function: 𝐵 = 𝑃𝑒!.!"!. The goal 
is to convey to a reader what the various values of 𝐵 might be. I will let each group decide 
how to make the table; we will compare among groups to see if you chose similar methods. 

Is 𝐵 an increasing or a decreasing function? 

Goals: Introduce multivariate functions. 

Skills: 

• Understand how to represent a multivariate function with a table of values. Tables can 
describe multivariate functions, but they are not as good as graphs. On the other hand, graphs 
can be difficult to produce or interpret, and sometimes having the raw numbers is better. The 
best approach is to have a formula, but many real world settings don’t yield known formulas 
(daily highs across the country is one example). 

Reading: Section 8.1. 

Day 47 

Activity: Graphing with cross sections. Homework 8 due today. 

Graphically, we view multivariate functions by holding all but two variables constant, and 
then graphing the remaining two variables using plotting techniques we already know. 
Because we view the dependent variable differently than the independent variables, the 
techniques fall into two basic types. 

Cross-sections occur when the dependent variable is one of the two variables we graph. In a 
three-dimensional setting, we can imagine we have “sliced” the surface vertically and are 
looking at the surface from the side, in a cross-section. If we line up a series of cross-
sections, we may be able to visualize the three-dimensional surface accurately. Cross-
sections can be done from any dimension, as long as the dependent variable is on the vertical 
axis. 

After you work on your activity today, I will continue to explore 𝑧 = 𝑥𝑦! + 𝑥!. This 
function is tougher than the one you’re working on, but we should see all the same issues. 

Activity: Describing a multivariate function with cross-sections. 

Using 𝐵 = 𝑃𝑒!.!"! hold 𝑃 constant (choose some values) and draw the resulting 𝐵 vs. 𝑡 
graphs. Then repeat holding 𝑡 constant and drawing the 𝐵 vs. 𝑃 graphs. Do they give you the 
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same impression of the surface? Is it the same as the impression you got in the activity from 
Day 46? 

When graphing cross-sections or contours, we may want to graph a whole series of values for 
𝑥, or 𝑧. In our calculators, we can replace the variable with a list that will accomplish this for 
us, saving a lot of typing. For example, if we wanted to graph 𝑦 = 𝑧! − 𝑥 − 3 for 𝑧   =
  −20,−10, 0, 10,  and  20, we can enter this: Y1={-20,-10,0,10,20}^2-x-3. The 
calculator will graph first 𝑦 = 400− 𝑥 − 3, then 𝑦 = 100− 𝑥 − 3, etc. One drawback to 
this approach is that when you TRACE, you won’t know which value in the list the curve 
represents. 

Goals: Explore cross-sections as a way to view multivariate functions. 

Skills: 

• Be able to produce cross-sections for a multivariate function. To make a cross-section of 
a multivariate function, hold all but one of the independent variables constant; then graph the 
dependent variable versus that last independent variable. Naturally, if there are many 
independent variables held constant, it will be difficult to visualize the entire surface. In the 
three-dimensional case, we can think of this approach as vertical “slices” of the surface, 
viewed from the side. 

Reading: Section 8.2. 

Day 48 

Activity: Graphing with contours. 

Contours occur in a three-dimensional surface when the dependent variable is held constant, 
and the other two variables are graphed. Due to the nature of functions, cross-sections will 
always create graphable formulas, but contours may result in something quite difficult to 
create. For example, it’s not at all clear when we begin what values to use for the dependent 
variable. Common uses for contours are topographic maps. You have seen weather maps that 
highlight temperatures. Instead of simply showing the isotherms (lines of equal temperatures) 
color is commonly used. 

After you work on your activity today, I will continue to explore 𝑧 = 𝑥𝑦! + 𝑥!. This 
function is tougher than the one you’re working on, but we should see all the same issues. 

Activity: Describing a multivariate function with contours. 

In practice, you will most likely not be producing contours. More often you will interpret 
them. But we want to be able to produce contours for simpler functions. Again, using 
𝐵 = 𝑃𝑒!.!"!, create some contours. You will need to choose some values of 𝐵 to make the 
contours for. It is not always clear what values will make the most sense. Trial and error may 
be in order. Does this contour graph give you the same impression that you got in the 
activities from Days 46 and 47? 
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When graphing cross-sections or contours, we may want to graph a whole series of values for 
𝑥, or 𝑧. In our calculators, we can replace the variable with a list that will accomplish this for 
us, saving a lot of typing. For example, if we wanted to graph 𝑦 = 𝑧! − 𝑥 − 3 for 𝑧   =
  −20,−10, 0, 10,  and  20, we can enter this: Y1={-20,-10,0,10,20}^2-x-3. The 
calculator will graph first 𝑦 = 400− 𝑥 − 3, then 𝑦 = 100− 𝑥 − 3, etc. One drawback to 
this approach is that when you TRACE, you won’t know which value in the list the curve 
represents. 

Goals: Explore contours as a way to view multivariate functions. 

Skills: 

• Be able to read and interpret contours for a multivariate function. Contour diagrams are 
views from above, basically. Imagine looking down on the surface, in the case of three 
dimensions. Contours represent horizontal “slices”. Contours may be difficult to produce, as 
the curves traced out may not be functions at all (for example: circles at a relative 
maximum). 

Reading: Section 8.3. 

Day 49 

Activity: Calculating Partial Derivatives. 

Just as for one-variable functions, we can talk about derivatives with multivariate functions. 
Basically, we will let one of the variables remain constant and explore how the other variable 
changes. This technique is called partial derivatives. All that we know about derivatives 
from earlier chapters apply here. One new aspect is that there are several possible 
derivatives. We also use different notations (see page 369). 

Activity: Calculate partial derivatives from tabular data. 

Problem 8 page 374. 

Goals: Calculate partial derivatives from tabular data. 

Skills: 

• Be able to estimate partial derivatives from tabular data. Calculating a derivative from a 
table in two or more dimensions is no different than it was in Chapter 2. We use slopes of 
secant lines, and due to the nature of tabular data, we can only “zoom in” so much. The only 
trick is to pay attention to which variable is being held constant. 

Reading: Section 8.4. 

Day 50 

Activity: Second partial derivatives. 
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There is another new idea about derivatives that we haven’t encountered before: the mixed 
second partial derivative. The regular second partial derivatives measure concavity, the same 
as the one-variable second derivatives. But when we take the mixed second partial derivative 
(see page 379) we are really estimating how the change in one direction changes as we move 
in the other direction. We are more estimating a kind of “twisting” in the surface. We will 
make more use of this on Day 51 when we classify the extrema. 

Activity 1: Calculate partial derivatives from graphs, both cross-sections and contours. 

Using your graphs from 𝐵 = 𝑃𝑒!.!"! from the activities on Days 46 and 47, estimate some 
values of the partial derivatives. 

Activity 2: Calculate partial derivative formulas. 

Verify your answers in Activity 1 using algebra. Then work on a few of problems 21 to 37 on 
page 381. 

Goals: Calculate partial derivatives from graphs (both cross-sections and contours), and from 
formulas. 

Skills: 

• Be able to estimate partial derivatives from graphs. From cross-section graphs, we can 
estimate the partial derivative for that variable in just the same way as in Chapters 2 and 3. 
For the contour graphs, we must use a different approach. Typically, we will estimate the 
difference between two contours, and express the ratio of the change in contours to distance 
between contours as the derivative in that direction. 

• Be able to calculate partial derivatives from formulas. Using the formulas from Chapter 
4, we can calculate partial derivatives exactly. The only difficulty is keeping track of which 
variable is allowed to vary; our notation is intended to remind us of this (see page 369). 

Reading: Section 8.5. 

Day 51 

Activity: Multivariate Optimization. 

To maximize or minimize a multivariate function, we use the same criteria we did for one-
variable function: critical points and the second derivative test. The details are slightly 
different for the second derivative test, and we will do several problems today practicing this 
technique. First we solve the first derivatives jointly by setting them to zero. This will give us 
candidates for extrema. Now we use the second derivative test (page 384) to help classify the 
candidates as maxima, minima, or neither. It is also possible the test is inconclusive. In those 
situations, we must use some other approach, perhaps something akin to the first derivative 
test, although using that approach is a bit trickier in multiple dimensions. Note: solving the 
first derivative formulas simultaneously for all variables present may be very difficult. One 
special case is when all the derivatives are linear. Then you can use techniques from MATH 
204 (the linear algebra/matrix results). 
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In addition to using formulas, make sure you can use graphs also to find extrema. Problems 1 
to 5 on pages 385-386 are good practice. 

Activity: Optimizing multivariate functions. 

I will work problems 6 and 9 in class. Try as many of the others as you can. Problems 6 
through 14 page 386. 

Goals: Understand how the derivatives can be used to find the extrema in multivariate functions. 

Skills: 

• Be able to find the extrema using a contour graph. Extrema on contour graphs are 
represented with closed loops. To find whether they are maxima or minima entails paying 
attention to the values of the contours around the points. 

• Be able to find extrema using algebra. Using the second derivative test, you should be able 
to classify the extrema as maxima, minima, or neither. In some cases, the second derivative 
test is inconclusive. 

Reading: Section 8.5. 

Day 52 

Activity: Continued Optimization. 

A new sort of critical point occurs in multiple dimensions called a saddle point. You can 
think of a mountain pass as one example; in one direction (going over the pass) the function 
is a maximum but in the other direction (going from one mountain to the other through the 
pass) the function is a minimum. The second derivative test will classify these saddle points 
as “neither”. 

Goals: Understand how a function can have a critical point but not be a maximum or a minimum. 

Skills: 

• Understand the saddle point in multivariate functions. In one direction, a saddle point is a 
maximum, but in another direction it is a minimum. If we are trying to optimize a function, it 
is critical to know if our critical points are maxima, minima, saddle points, ridges, etc. 

Reading: Chapter 8. 

Day 53 

Activity: Review. Homework 9 due today. 

Reading: Chapters 5, 6, 7, and 8. 
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Day 54 

Activity: Presentation 3. 

Pick one of these functions (I will select groups in a random order to choose): 

1) 𝑧 = 𝑥! + 3𝑦! − 4𝑥 + 6𝑦 + 10, 2) 𝑧 = 𝑥 1+ 𝑦 + 𝑦!, 3) 𝑧 = 𝑥𝑦!𝑒!!, 
4) 𝑧 = 𝑥! + 𝑦 + 𝑥𝑦,   5) 𝑧 = 𝑥! − 3𝑥 + 𝑦!,  6) 𝑧 = !

!!!!!!!
, 

7) 𝑧 = 𝑥 − 𝑦 !. 

Graph some cross-sections, a contour graph, and classify the critical points. Show how your 
critical points appear in each of your displays. 

Reading: Chapters 5, 6, 7, and 8. 

Day 55 

Activity: Review. 

Reading: Chapters 5, 6, 7, and 8. 

Day 56 

Activity: Exam 3. 

This last exam covers integrals, including antiderivatives, and multivariate functions, 
Chapters 5, 6, 7, and 8. Some of the questions might be multiple choice. Others will require 
you to show your worked out solution. 
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Populations for the 50 states, DC, and the USA, by decade. 
(in thousands) 

 AL AK AZ AR CA CO CT DE DC FL GA HI ID IL IN IA KS KY 
1790       238 59   83       74 
1800 1      251 64 8  163    6   221 
1810 9   1   262 73 16  252   12 25   407 
1820 128   14   275 73 23  341   55 147   564 
1830 310   30   298 77 30 35 517   157 343   688 
1840 591   98   310 78 34 54 691   476 686 43  780 
1850 772   210 93  371 92 52 87 906   851 988 192  982 
1860 964   435 380 34 460 112 75 140 1057   1712 1350 675 107 1156 
1870 997  10 484 560 40 537 125 132 188 1184  15 2540 1680 1194 364 1321 
1880 1263 33 40 803 865 194 623 147 178 269 1542  33 3078 1978 1625 996 1649 
1890 1513 32 88 1128 1213 413 746 168 230 391 1837  89 3826 2192 1912 1428 1859 
1900 1829 64 123 1312 1485 540 908 185 279 529 2216 154 162 4822 2516 2232 1470 2147 
1910 2138 64 204 1574 2378 799 1115 202 331 753 2609 192 326 5639 2701 2225 1691 2290 
1920 2348 55 334 1752 3427 940 1381 223 438 968 2896 256 432 6485 2930 2404 1769 2417 
1930 2646 59 436 1854 5677 1036 1607 238 487 1468 2909 368 445 7631 3239 2471 1881 2615 
1940 2833 73 499 1949 6907 1123 1709 267 663 1897 3124 423 525 7897 3428 2538 1801 2846 
1950 3062 129 750 1910 10586 1325 2007 318 802 2771 3445 500 589 8712 3934 2621 1905 2945 
1960 3267 226 1302 1786 15717 1754 2535 446 764 4952 3943 633 667 10081 4662 2758 2179 3038 
1970 3444 303 1775 1923 19971 2210 3032 548 757 6791 4588 770 713 11110 5195 2825 2249 3221 
1980 3894 402 2717 2286 23668 2890 3108 594 638 9747 5463 965 944 11427 5490 2914 2364 3660 
1990 4040 550 3665 2351 29760 3294 3287 666 607 12938 6478 1108 1007 11430 5544 2777 2478 3685 
2000 4447 627 5131 2673 33872 4301 3406 784 572 15982 8186 1212 1294 12419 6080 2926 2688 4042 
2010 4780 710 6392 2916 37254 5029 3574 898 602 18801 9688 1360 1568 12831 6484 3046 2853 4339 

 

 LA ME MD MA MI MN MS MO MT NE NV NH NJ NM NY NC ND OH 
1790  97 320 379        142 184  340 394   
1800  152 342 423   8     184 211  589 478  45 
1810 77 229 381 472 5  31 20    214 246  959 556  231 
1820 153 298 407 523 9  75 67    244 278  1373 639  581 
1830 216 399 447 610 32  137 140    269 321  1919 736  938 
1840 352 502 470 738 212  376 384    285 373  2429 753  1519 
1850 518 583 583 995 398 6 607 682    318 490 62 3097 869  1980 
1860 708 628 687 1231 749 172 791 1182  29 7 326 672 94 3881 993  2340 
1870 727 627 781 1457 1184 440 828 1721 21 123 42 318 906 92 4383 1071 2 2665 
1880 940 649 935 1783 1637 781 1132 2168 39 452 62 347 1131 120 5083 1400 37 3198 
1890 1119 661 1042 2239 2094 1310 1290 2679 143 1063 47 377 1445 160 6003 1618 191 3672 
1900 1382 694 1188 2805 2421 1751 1551 3107 243 1066 42 412 1884 195 7269 1894 319 4158 
1910 1656 742 1295 3366 2810 2076 1797 3293 376 1192 82 431 2537 327 9114 2206 577 4767 
1920 1799 768 1450 3852 3668 2387 1791 3404 549 1296 77 443 3156 360 10385 2559 647 5759 
1930 2102 797 1632 4250 4842 2564 2010 3629 538 1378 91 465 4041 423 12588 3170 681 6647 
1940 2364 847 1821 4317 5256 2792 2184 3785 559 1316 110 492 4160 532 13479 3572 642 6908 
1950 2684 914 2343 4691 6372 2982 2179 3955 591 1326 160 533 4835 681 14830 4062 620 7947 
1960 3257 969 3101 5149 7823 3414 2178 4320 675 1411 285 607 6067 951 16782 4556 632 9706 
1970 3645 994 3924 5689 8882 3806 2217 4678 694 1485 489 738 7171 1017 18241 5084 618 10657 
1980 4206 1125 4217 5737 9262 4076 2521 4917 787 1570 801 921 7365 1303 17558 5880 653 10798 
1990 4220 1228 4781 6016 9295 4375 2573 5117 799 1578 1202 1109 7730 1515 17990 6629 639 10847 
2000 4469 1275 5296 6349 9938 4919 2845 5595 902 1711 1998 1236 8414 1819 18976 8049 642 11353 
2010 4533 1328 5774 6548 9884 5304 2967 5989 989 1826 2701 1316 8792 2059 19378 9535 673 11537 
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 OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY USA 
1790   434 69 249  36   85 692  56   3929 
1800   602 69 346  106   154 808  79   5308 
1810   810 77 415  262   218 878  105   7240 
1820   1049 83 503  423   236 938  137   9638 
1830   1348 97 581  682   281 1044  177   12866 
1840   1724 109 594  829   292 1025  225 31  17069 
1850  12 2312 148 669  1003 213 11 314 1119 1 302 305  23192 
1860  52 2906 175 704 5 1110 604 40 315 1220 12 377 776  31443 
1870  91 3522 217 706 12 1259 819 87 331 1225 24 442 1055 9 38558 
1880  175 4283 277 996 98 1542 1592 144 332 1513 75 618 1315 21 50189 
1890 259 318 5258 346 1151 349 1768 2236 211 332 1656 357 763 1693 63 62980 
1900 790 414 6302 429 1340 402 2021 3049 277 344 1854 518 959 2069 93 76212 
1910 1657 673 7665 543 1515 584 2185 3897 373 356 2062 1142 1221 2334 146 92228 
1920 2028 783 8720 604 1684 637 2338 4663 449 352 2309 1357 1464 2632 194 106022 
1930 2396 954 9631 687 1739 693 2617 5825 508 360 2422 1563 1729 2939 226 123203 
1940 2336 1090 9900 713 1900 643 2916 6415 550 359 2678 1736 1902 3138 251 132165 
1950 2233 1521 10498 792 2117 653 3292 7711 689 378 3319 2379 2006 3435 291 151326 
1960 2328 1769 11319 859 2383 681 3567 9580 891 390 3967 2853 1860 3952 330 179323 
1970 2559 2092 11801 950 2591 666 3926 11199 1059 445 4651 3413 1744 4418 332 203302 
1980 3025 2633 11865 947 3121 691 4591 14226 1461 511 5347 4132 1950 4706 470 226542 
1990 3146 2842 11882 1003 3487 696 4877 16987 1723 563 6187 4867 1793 4892 454 248710 
2000 3451 3421 12281 1048 4012 755 5689 20852 2233 609 7079 5894 1808 5364 494 281422 
2010 3751 3831 12702 1053 4625 814 6346 25146 2764 626 8001 6725 1853 5687 564 308746 
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