NOCTURNAL HYPOTHERMIA IN SEASONALLY ACCLIMATIZED MOUNTAIN CHICKADEES AND JUNIPER TITMICE

SHELDON J. COOPER1 AND JAMES A. GESSAMAN
Department of Biology, Utah State University, Logan, UT 84322

Abstract. We measured body temperature of Mountain Chickadees (Poecile gambeli) and Juniper Titmice (Baeolophus ridgwayi) at different times of day and under a range of ambient temperatures in order to determine the use of nocturnal hypothermia in seasonally acclimatized small passerines. Our findings show both species used nocturnal hypothermia year-round. Depth of hypothermia was inversely correlated to body mass in Juniper Titmice but not in Mountain Chickadees. In both species, depth of hypothermia did not vary seasonally but nocturnal body temperature was regulated 3–11°C lower than daytime values. Nocturnal energy savings range from 7%–50% in chickadees and from 10%–28% in titmice. These nocturnal energy savings translate into ecologically important reductions in daily energy expenditures for these two species.

Key words: Baeolophus ridgwayi, body temperature, energy metabolism, nocturnal hypothermia, Poecile gambeli.

Species that overwinter in cold climates endure periods of potentially high energetic demands, especially for small birds that live at high latitudes or altitudes (Bryant and Tatner 1988, Weathers et al. 1999, Cooper 2000, Webster and Weathers 2000, Doherty et al. 2001). Birds that overwinter in cold temperate regions must maintain high metabolic rates in order to maintain normothermic body temperatures during times of extreme cold, shorter daylength, and possible decreased access to food due to snow or ice cover. However, during the nocturnal roost, facultative hypothermia may be used to save energy and decrease foraging needs (McKechnie and Lovegrove 2002).

Hypothermia is defined as any core body temperature (Tb) below the setpoint specified for the active state of the species. For birds, hypothermia generally occurs nocturnally and has traditionally been defined as a decrease in Tb to 30–38°C (Reinertsen 1996); a reduction from the mean of 41.6°C for the active phase of most songbirds (Prinzinger et al. 1991). Nocturnal hypothermia has been documented for several passerine species in the family Paridae, such as Black-capped Chickadees (Poecile atricapilla), Carolina Chickadees (P. carolinensis), Gray-headed Chickadees (P. cincta), and Willow Tits (P. montana, Steen 1958, Haftorn 1972, Chaplin 1976, Mayer et al. 1982, Reinertsen and Haftorn 1983). For these species, a reduction in Tb of 4–10°C resulted in savings of 10%–33% in overnight energy expenditure. However, general patterns of hypothermia in parids are not consistent. For example, Black-capped Chickadees, living in Alaska near the northern range boundary had nocturnal Tb only 3°C below daytime Tb (Grossman and West 1977). However, Sharbaugh (2001) recorded an average reduction in Tb of 4–10°C in Black-capped Chickadees from Alaska that were exposed to cold temperature in both summer and winter. In contrast to Black-capped Chickadees, depth of hypothermia varied seasonally in Willow Tits (Reinertsen and Haftorn 1983) where winter birds had lower hypothemric Tb than their summer counterparts. In addition, Reinertsen and Haftorn (1986) found that Great Tits (Parus major) did not utilize nocturnal hypothermia unless they had below-normal energy reserves when entering the roost.

We measured Tb over a wide range of ambient temperatures in seasonally acclimatized Mountain Chickadees (Poecile gambeli) and Juniper Titmice (Baeolophus ridgwayi). Mountain Chickadees and Juniper Titmice are small, mostly nonmigratory members of the Paridae family that occupy coniferous forests of west-

Manuscript received 25 May 2004; accepted 22 October 2004.

1 Present address: Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Oshkosh, WI 54901. E-mail: cooper@uwosh.edu
ern North America. They inhabit relatively high altitude regions (~700–3300 m; Bent 1946) characterized by harsh climatic conditions throughout much of the year. Thus, they may use hypothermia to a greater extent than parids from low altitudes.

METHODS

Mountain Chickadees and Juniper Titmice were captured in Box Elder and Cache County, Utah, (1700–2250 m altitude) in mist nets in summer and winter of 1994 to 1996. Body mass was measured upon capture to the nearest 0.1 g with a portable electronic balance (Ohaus CT-1200, Pine Brook, New Jersey). Following capture, birds were transported to the laboratory where they were housed individually in cages (30 × 25 × 30 cm) placed inside a temperature-controlled environmental chamber (3 × 3 × 2.5 m). The environmental chamber and photoperiod followed a daily cycle that approximated the season and study site to which the bird had been accustomed. While in captivity, birds were provided free access to water, grit, and food (Tenebrio larvae and sunflower seeds). All individual birds maintained mass while in captivity. Individuals were tested within 1 week of capture. Birds tested from 11 May to 30 August were designated “summer birds,” and those tested from 23 November to 1 March were designated “winter birds.”

BODY TEMPERATURE MEASUREMENTS

All Tb measurements were taken using a 30-gauge copper-constantan thermocouple attached to an Omega thermometer (Model HH25-TC, Stamford, Connecticut). The thermocouples were calibrated to a mercury-thermometer (Model HH25-TC, Stamford, Connecticut) per-constantan thermocouple attached to an Omega emissivity near 1.0. Birds rested on hardware cloth above paraffin oil that was used to collect excreta. The thermocouple was inserted into the cloaca to a depth where further insertion did not alter temperature (approximately 10–12 mm). Body temperature was recorded immediately upon capture and after daytime and nighttime metabolic measurements.

METABOLIC RATE MEASUREMENTS

Details on the measurement of metabolic rate at ambient temperatures (ranging from −10 to 30°C) are reported in Cooper (2000), and Cooper and Gessaman (2004). Briefly, birds were placed into a metabolic chamber constructed from a 3.8-L paint can. The inside of the can was painted flat black to provide an emissivity near 1.0. Birds rested on hardware cloth above paraffin oil that was used to collect excreta. Rates of oxygen consumption (VO2) were measured continuously using open-circuit respirometry with an Ametek S-3A oxygen analyzer (Pittsburgh, Pennsylvania). Dry, CO2-free air was drawn through the metabolic chamber using a diaphragm pump. Outlet flow rates of dry, CO2-free air were maintained at 452–460 mL min−1 which yielded changes in oxygen content between influx and efflux gas of 0.3% and 0.6% and maintained oxygen content of efflux gas above 20.3%. Measurements of outlet gas concentrations were recorded every 15 sec on a computer using Datacam 5.0 data collection and analysis software (Sable Systems International, Las Vegas, Nevada). VO2 was measured on individual birds exposed to a single temperature within the series for two hours. The first hour was used to let the bird equilibrate and VO2 was measured over the last hour of the trial. Oxygen consumption was calculated as steady state V̇O2 using equation 4a of Withers (1977). All values were corrected to standard temperature and pressure.

Nocturnal energy savings due to hypothermia for chickadees and titmice was determined as the difference between the predicted VO2 of normothermic individuals and the measured VO2 of hypothermic individuals. Predicted normothermic VO2 was calculated at 10°C intervals over the Tb range of −10 to 20°C using the equation VO2 = C(Tb − T), where C is thermal conductance. Minimal thermal conductance values for chickadees and titmice from Cooper (1998) were used at each temperature interval and we used an average resting phase Tb of 39°C (Prinzinger et al. 1991) to calculate normothermic VO2.

STATISTICAL ANALYSES

All data are presented as mean ± SD. Means of Tb were compared using Student’s t-tests as variances were not significantly different and data met the assumptions of normality. Least-squares linear regression was used to evaluate the relationship between ambient and body temperature. The effect of body reserves on depth of hypothermia in seasonally acclimatized individuals was determined by a multiple regression of body mass and Tb on Tm. All statistics were computed using SPSS 6.1 (Norusis 1989) and we report statistical significance at P < 0.05.

RESULTS

Mean body mass ranged from 10.8–11.4 g (n = 100) in chickadees and from 16.0–17.2 g (n = 45) in titmice depending upon season and time of day (Cooper 1998).

Mean daytime Tb of chickadees was 39.2 ± 1.6°C in summer (range = 38.0–43.0°C, n = 50) and did not significantly differ from daytime Tb of winter chickadees (38.9 ± 1.2°C, range = 38.0–42.6°C, n = 42, t = 1.0, P = 0.30). Mean daytime Tb of titmice was 39.8 ± 1.6°C in summer (range = 38.5–41.7°C, n = 21) and did not differ significantly from daytime Tb of winter titmice (39.5 ± 1.1°C, range = 38.0–41.6°C, n = 16, t = 0.7, P = 0.47). Nocturnal Tb of chickadees in summer (35.5 ± 1.8°C, range = 31.5–37.6°C, n = 18) did not significantly differ from nocturnal Tb of winter chickadees (36.0 ± 2.2°C, range = 31.1–38.8°C, n = 23, t = −0.9, P = 0.39). There was no significant difference (t = 0.7, P = 0.47) in nocturnal Tb of titmice in summer (35.8 ± 1.2°C, range = 31.2–38.6°C, n = 24) or winter (35.3 ± 2.0°C, range = 31.2–38.8°C, n = 18, Fig. 1). However, in summer and winter, mean nocturnal Tb was significantly lower than mean daytime Tb (summer chickadees; t = −7.7, P ≤ 0.001, summer titmice; t = −6.6, P ≤ 0.001, winter chickadees; t = −7.0, P ≤ 0.001, winter titmice; t = −7.6, P ≤ 0.001) indicating that regardless of season, chickadees and titmice use nocturnal hypothermia as a strategy to save energy. Since continuous Tb measurements for individuals were not recorded, the exact duration of the hypothermic period is unknown. The duration of the hypothermic period was estimated by visual inspection of a quadratic fit of time on Tb. The duration of the hypothermic period was calculated as the time period in which the average Tb was below
38°C. Nocturnal hypothermia was used by both species for approximately a 9 to 10-hr period in summer and a 14-hr period in winter (Fig. 1).

Depth of hypothermia in seasonally acclimatized birds exposed to temperatures below their lower critical temperature varied with T_a in titmice (Fig. 2) but not chickadees (summer chickadees; $n = 15$, $r^2 < 0.001$, $P = 0.95$, winter chickadees; $n = 10$, $r^2 = 0.20$, $P = 0.20$). Body mass did not contribute to depth of hypothermia in chickadees (summer; $n = 15$, $P = 0.23$, winter $n = 10$, $P = 0.08$) but body mass and T_a were significantly correlated with T_b in titmice (summer; $n = 18$, $r^2 = 0.79$, $P < 0.001$, winter; $n = 10$, $r^2 = 0.82$, $P < 0.001$).

Nocturnal energy savings, the percent reduction in metabolism for hypothermic birds compared to predicted metabolism for normothermic individuals, ranged from 7%–50% in chickadees and from 10%–28% in titmice (Table 1). The decreased energy savings with associated decreased T_b were more pronounced in chickadees compared to titmice.

TABLE 1. Calculated energy savings associated with nocturnal hypothermia in summer and winter-acclimatized Mountain Chickadees and Juniper Titmice. Energy savings are the percent reduction in metabolism in hypothermic birds compared to predicted normothermic rates.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Summer Energy Savings (%)</th>
<th>Winter Energy Savings (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chickadees</td>
<td>Titmice</td>
</tr>
<tr>
<td>20</td>
<td>49.8</td>
<td>16.0</td>
</tr>
<tr>
<td>10</td>
<td>20.1</td>
<td>13.5</td>
</tr>
<tr>
<td>0</td>
<td>8.9</td>
<td>12.3</td>
</tr>
<tr>
<td>-10</td>
<td>7.1</td>
<td>11.5</td>
</tr>
</tbody>
</table>
DISCUSSION

Mountain Chickadees and Juniper Titmice use nocturnal hypothermia throughout the annual cycle. In summer, birds, nocturnal T_b decreased 4–11°C below mean daytime T_b in each species. In winter, nocturnal T_b decreased 3–9°C below mean daytime T_b in each species. There were no seasonal differences in mean daytime or mean nocturnal T_b for either species. This contrasts with Black-capped Chickadees from New York (Chaplin 1974) and Willow Tits (Reinertsen and Haftorn 1983) that have significantly lower nocturnal T_b in winter relative to other seasons. The lack of seasonal change in depth of hypothermia may be in part due to the high climatic variability associated with high altitude. Gray-crowned Rosy-finchies (Leucosticte tephrocoris) captured in the White Mountains of California (2500 to 4200 m elevation) also lack seasonal differences in T_b during nocturnal hypothermia (Clemens 1989).

Although depth of hypothermia was not related to season, degree of hypothermia below the thermoneutral zone was dependent on T_b in titmice. A similar relationship was found for Gray-headed Chickadees (Haftorn 1972), Black-capped Chickadees (Chaplin 1976), and Willow Tits (Reinertsen and Haftorn 1983). For Mountain Chickadees, the lack of association between T_b and T_a may allow them to save energy by using hypothermia at relatively high temperatures during the summer.

In addition to T_b, the amount of body reserves appears to be an important factor in regulating depth of hypothermia. In titmice, T_b was dependent on the combined effects of T_b and body mass. Thus, birds with lower energy reserves entering the roost at night decreased T_b more than a bird with greater reserves. The relationship between degree of hypothermia and body reserves has also been found in Great Tits, Common Redpolls (Carduelis flammea) and Willow Tits (Reinertsen and Haftorn 1983, 1986). Among chickadees, body mass was not related to depth of hypothermia in summer or winter. Since we did not restrict food resources in this study, one explanation may be that chickadees exhibit this pattern only when energy reserves are depleted. However, Hester (1996) also found that overnight resting metabolic rates and T_bs were not dependent on energy stores in winter-acclimatized Black-capped Chickadees. The lack of association between T_b and body mass may provide significant energetic savings for mountain chickadees even when foraging is not restricted.

We calculated nocturnal energy savings to show a difference in energy savings across a range of temperatures. It should be pointed out that energy savings are not constant. T_b affects T_a in titmice and thermal conductance varies with T_b in summer-acclimatized chickadees (Cooper 1998). In addition, as T_b decreases below the lower critical temperature, overall metabolism increases due to increased thermoregulatory costs. Thus, the percent energy savings declines with decreasing T_b.

Nocturnal hypothermia and the associated savings in energy can translate into ecologically important reduced daily energy expenditure. These daily energy expenditures can be calculated to show the importance of nocturnal hypothermia as an energy saving strategy (Cooper 2000). For example, a 9-hr summer evening at 10°C would result in an energy conservation of 4.75 kJ for chickadees and 4.34 kJ for titmice. These totals represent a 9.7% reduction in daily energy expenditure for chickadees and 9.0% reduction for titmice. In winter, chickadees would conserve 9.08 kJ and titmice would conserve 7.27 kJ during a 14-hr evening at −10°C. This results in chickadees reducing daily energy expenditure by 13.7% while titmice would reduce daily energy expenditure by 7.4%. These energy reductions may be critical to the survival of individuals especially during inclement winter weather.

Kim Sullivan, Dana Vaughan, David S. Dobkin, and two anonymous reviewers provided many useful suggestions on earlier drafts of this manuscript. Thanks to Keith Dixon for providing information on study sites and to Jaclyn Cooper and Glenn Wilson for lab assistance. This study was supported in part by a North American Bluebird Society student research grant, a Sigma Xi Grant-in-Aid of Research to SJC and funding from the Ecotology Center at Utah State University to JAG. Birds were captured under federal (#PRT-779300) and state (2COLL1401) scientific collecting permits.

LITERATURE CITED

COOPER, S. J. 1998. The role of cold acclimatization on the biogeography of the Mountain Chickadee (Parus gambeli) and the Juniper Titmouse (Parus ridgwayi). Ph.D. dissertation, Utah State University, Logan, UT.

GROSSMAN, A. F., AND G. C. WEST. 1977. Metabolic rate and temperature regulation of winter acclimatized Black-capped Chickadees Parus atrica-

EVALUATION OF ALLOZYME AND MICROSATELLITE VARIATION IN TEXAS AND FLORIDA MOTTLED DUCKS

CHRISTEN L. WILLIAMS1,4, ALAN M. FEDYNICH2, DAN B. PENCE1 and OLIN E. RHODES, JR.1

1Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47906
2Caeser Kleberg Wildlife Research Institute, MSC 218, Texas A&M University-Kingsville, Kingsville, TX 78363
3Department of Pathology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430
4Present address: USDA, Wildlife Services, National Wildlife Research Center, 4101 La Porte Ave, Fort Collins, CO 80521. E-mail: christen.l.williams@aphis.usda.gov

Abstract. Genetic variation was evaluated in Florida Mottled Ducks (Anas fulvigula), and Mottled Ducks from the larger Texas population using 22 allozyme and 5 microsatellite loci. Both marker types revealed differences in allele frequencies between populations and each population possessed rare and unique alleles. Overall allelic distributions were significantly different between the two populations, primarily due to significant differences at three allozyme and four microsatellite loci. Significant genetic differentiation was revealed between populations with both marker types, however, over all loci, only 5–6% of the variation detected was partitioned between populations. The Florida population possessed lower levels of allozyme heterozygosity and allelic diversity than the Texas population. In contrast, microsatellite heterozygosities and allelic diversity were similar between populations. These data indicate that there is limited gene flow between populations, suggesting that populations should continue to be managed separately.

Key words: allozyme, Anas fulvigula, microsatellite, Mottled Duck.