1 Fixed points and Stability

Given $x_{n+1} = f(x_n)$ then x^* is a fixed point if $f(x^*) = x^*$.

STABILITY: Consider a small perturbation of x^* :

$$\eta_n = x_n - x^*$$

then
$$x_{n+1} = f(x_n) \Longrightarrow x^* + \eta_{n+1} = f(x^* + \eta_n)$$

$$x^* + \eta_{n+1} = f(x^*) + f'(x^*)\eta_n + O(\eta_n^2)$$

The linearized map near x^* is

$$\eta_{n+1} = f'(x^*)\eta_n$$

The eigenvalue or multiplier is $\lambda = f'(x^*)$. So

$$\eta_1 = \lambda \eta_0, \, \eta_2 = \lambda^2 \eta_0, \, \eta_3 = \lambda^3 \eta_0, \cdots, \, \eta_n = \lambda^n \eta_0$$

• If
$$|\lambda| = |f'(x^*)| < 1 : \eta_n \longrightarrow 0$$
 as $n \longrightarrow \infty$, i.e.,

 $x_n \longrightarrow x^*$. x^* is linearly stable.

• If
$$|\lambda| = |f'(x^*)| > 1 : |\eta_n| \longrightarrow \infty$$
 as $n \longrightarrow \infty$, i.e.,

 x^* is unstable.

• If
$$|\lambda| = |f'(x^*)| = 1$$
 : marginal case

• If $|\lambda| = |f'(x^*)| = 0$: $\eta_{n+1} \sim \eta_n^2$, we get quadratic convergence, x^* is superstable.

EXAMPLE: $x^2 - x - 2 = 0 \implies (x - 2)(x + 1) = 0$, near the root x = 2

Possible iterations:

$$x_{n+1} = f(x_n) = x_n^2 - 2$$
 $f'(x) = 2x, f'(2) = 4 > 1$

unstable, no convergence.

$$x_{n+1} = f(x_n) = \sqrt{x_n + 2}$$
 $f'(x) = \frac{1}{2\sqrt{x+2}}, f'(2) = 1/4$

monotonic convergence.

$$x_{n+1} = f(x_n) = 1 + 2/x_n$$
 $f'(x) = -2/x^2, f'(2) = -1/2$

oscillatory convergence.

$$x_{n+1} = f(x_n) = x_n - \frac{x_n^2 - x_n - 2}{2x_n - 1}$$

superstable.

Cobwebbs: Example : $x_{n+1} = \cos(x_n)$

For any initial condition, $x_n \longrightarrow x^*$ where $x^* = 0.739085...$

The unique root of $x - \cos x = 0$.

The multiplier is $|f'(x^*)| = |-\sin x^*| < 1 \implies$ stable

Convergence through damped oscillations.

2 Logistic Map

$$x_{n+1} = f(x_n) = rx_n(1-x_n)$$

The graph of f is a parabola. Since f'(x) = r(1 - 2x)the maximum of f is at (1/2, r/4). So we restrict our attention to $0 \le r \le 4$: then $f: [0, 1] \longrightarrow [0, 1]$, i.e., f maps unit interval into itself. **FIXED POINTS:** Solve x = f(x) = rx(1 - x) $(r - 1)x - rx^2 = 0 \implies x^* = 0$ or $x^* = 1 - \frac{1}{r} \in [0, 1]$

 $(r-1)x - rx^2 = 0 \implies x^* = 0 \text{ or } x^* = 1 - \frac{1}{r} \in [0, 1] \text{ for } r \ge 1.$

STABILITY: $x^* = 0$

$$f'(0) = r \Longrightarrow \left\{ egin{array}{cc} {
m stable} \ , & 0 \leq r < 1 \ {
m unstable} \ , & r > 1 \end{array}
ight.$$

At r = 1, $f(x) = x - x^2 < x$ for $0 < x \le 1 \Longrightarrow x^* = 0$ is stable.

 $x^* = 0$ becomes unstable through a transcritical bifurcation at r = 1.

STABILITY: $x^* = 1 - \frac{1}{r}$

$$f'(1-\frac{1}{r}) = r(1-2(1-1/r)) = 2-r$$

So $x^* = 1 - \frac{1}{r}$ is stable if |2 - r| < 1 or 1 < r < 3

(note superstable when r = 2).

and $x^* = 1 - \frac{1}{r}$ is unstable if r > 3.

What happens for r > 3?

For example if r = 3.2, iterates oscillate between two values x_1, x_2

such that $x_1 < x^* < x_2$. We get a period 2 cycle or a 2-cycle.

We say that we have a **period doubling bifurcation** at r = 3.

For larger r: for example r = 3.5 iterates oscillate between four values, so we get a 4-cycle (we get another period doubling)

There will be further period doublings to period 8, 16, 32, 64,...

Let r_n be the value of r at which a 2^n -cycle first appears

Numerically

r	cycle
$r_1 = 3$	2
$r_2 = 1 + \sqrt{6}$	4
$r_3 = 3.54409$	8
$r_4 = 3.5644$	16
$r_5 = 3.568759$	32
:	:
$r_{\infty} = 3.569946$	∞

Successive bifurcations occur faster and faster and $r_n \longrightarrow r_\infty$ as $n \longrightarrow \infty$.

Convergence is geometric:

$$\delta = \lim_{n \to \infty} \frac{r_n - r_{n-1}}{r_{n+1} - r_n} = 4.669...$$
Feigenbaum's constant

For $r > r_{\infty}$: CHAOS

• Aperiodic long-term dynamics

- Sequence {x_n} never settles down to a fixed point or periodic orbit
- Sensitive dependence on initial conditions: two trajectories starting close together rapidly diverge from each other.

 $(\implies$ long-term prediction impossible: small uncertainties are amplified exponentially fast)

- Irregularity due to nonlinearity, not noise.
- Chaos: Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.

Let us do some Maple to check the previous statements.

First we will graph some iterates for r = 0.8, 1.5, 2.0, 2.8, 3.10,

3.2, 3.5, 3.55, 3.565, 3.6, 3.84, 4.0.

Then we draw some cobweb diagrams for the logistic map.