1 Fixed points and Stability

Given $x_{n+1}=f\left(x_{n}\right)$ then x^{*} is a fixed point if $f\left(x^{*}\right)=x^{*}$.

STABILITY: Consider a small perturbation of x^{*} :

$$
\eta_{n}=x_{n}-x^{*}
$$

then $x_{n+1}=f\left(x_{n}\right) \Longrightarrow x^{*}+\eta_{n+1}=f\left(x^{*}+\eta_{n}\right)$

$$
x^{*}+\eta_{n+1}=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) \eta_{n}+O\left(\eta_{n}^{2}\right)
$$

The linearized map near x^{*} is

$$
\eta_{n+1}=f^{\prime}\left(x^{*}\right) \eta_{n}
$$

The eigenvalue or multiplier is $\lambda=f^{\prime}\left(x^{*}\right)$. So

$$
\eta_{1}=\lambda \eta_{0}, \eta_{2}=\lambda^{2} \eta_{0}, \eta_{3}=\lambda^{3} \eta_{0}, \cdots, \eta_{n}=\lambda^{n} \eta_{0}
$$

- If $|\lambda|=\left|f^{\prime}\left(x^{*}\right)\right|<1: \eta_{n} \longrightarrow 0$ as $n \longrightarrow \infty$, i.e.,
$x_{n} \longrightarrow x^{*} . x^{*}$ is linearly stable.
- If $|\lambda|=\left|f^{\prime}\left(x^{*}\right)\right|>1:\left|\eta_{n}\right| \longrightarrow \infty$ as $n \longrightarrow \infty$, i.e.,
x^{*} is unstable.
- If $|\lambda|=\left|f^{\prime}\left(x^{*}\right)\right|=1$: marginal case
- If $|\lambda|=\left|f^{\prime}\left(x^{*}\right)\right|=0: \eta_{n+1} \sim \eta_{n}^{2}$, we get quadratic convergence, x^{*} is superstable.

EXAMPLE: $x^{2}-x-2=0 \Longrightarrow(x-2)(x+1)=0$, near the root $x=2$

Possible iterations:
$x_{n+1}=f\left(x_{n}\right)=x_{n}^{2}-2 \quad f^{\prime}(x)=2 x, f^{\prime}(2)=4>1$ unstable, no convergence.

$$
x_{n+1}=f\left(x_{n}\right)=\sqrt{x_{n}+2} \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x+2}}, f^{\prime}(2)=1 / 4
$$

monotonic convergence.
$x_{n+1}=f\left(x_{n}\right)=1+2 / x_{n} \quad f^{\prime}(x)=-2 / x^{2}, f^{\prime}(2)=-1 / 2$
oscillatory convergence.
$x_{n+1}=f\left(x_{n}\right)=x_{n}-\frac{x_{n}^{2}-x_{n}-2}{2 x_{n}-1}$
superstable.

Cobwebbs: Example : $x_{n+1}=\cos \left(x_{n}\right)$

For any initial condition, $x_{n} \longrightarrow x^{*}$ where $x^{*}=0.739085 \ldots$

The unique root of $x-\cos x=0$.

The multiplier is $\left|f^{\prime}\left(x^{*}\right)\right|=\left|-\sin x^{*}\right|<1 \Longrightarrow$ stable

Convergence through damped oscillations.

2 Logistic Map

$x_{n+1}=f\left(x_{n}\right)=r x_{n}\left(1-x_{n}\right)$

The graph of f is a parabola. Since $f^{\prime}(x)=r(1-2 x)$
the maximum of f is at $(1 / 2, r / 4)$.

So we restrict our attention to $0 \leq r \leq 4$: then
$f:[0,1] \longrightarrow[0,1]$, i.e., f maps unit interval into itself.

FIXED POINTS: Solve $x=f(x)=r x(1-x)$
$(r-1) x-r x^{2}=0 \Longrightarrow x^{*}=0$ or $x^{*}=1-\frac{1}{r} \in[0,1]$ for $r \geq 1$.

STABILITY: $x^{*}=0$
$f^{\prime}(0)=r \Longrightarrow \begin{cases}\text { stable }, & 0 \leq r<1 \\ \text { unstable }, & r>1\end{cases}$

At $r=1, f(x)=x-x^{2}<x$ for $0<x \leq 1 \Longrightarrow x^{*}=0$ is stable.
$x^{*}=0$ becomes unstable through a transcritical bifurcation at $r=1$.

STABILITY: $x^{*}=1-\frac{1}{r}$
$f^{\prime}\left(1-\frac{1}{r}\right)=r(1-2(1-1 / r))=2-r$
So $x^{*}=1-\frac{1}{r}$ is stable if $|2-r|<1$ or $1<r<3$
(note superstable when $r=2$).
and $x^{*}=1-\frac{1}{r}$ is unstable if $r>3$.

What happens for $r>3$?

For example if $r=3.2$, iterates oscillate between two values x_{1}, x_{2}
such that $x_{1}<x^{*}<x_{2}$. We get a period 2 cycle or a 2 -cycle.

We say that we have a period doubling bifurcation at $r=3$.

For larger r : for example $r=3.5$ iterates oscillate between four values, so we get a 4-cycle (we get another period doubling)

There will be further period doublings to period $8,16,32,64, \ldots$

Let r_{n} be the value of r at which a 2^{n}-cycle first appears

Numerically

r	cycle
$r_{1}=3$	2
$r_{2}=1+\sqrt{6}$	4
$r_{3}=3.54409 \ldots$	8
$r_{4}=3.5644 \ldots$	16
$r_{5}=3.568759 \ldots$	32
\vdots	\vdots
$r_{\infty}=3.569946 \ldots$	∞

Successive bifurcations occur faster and faster and $r_{n} \longrightarrow r_{\infty}$ as $n \longrightarrow \infty$.

Convergence is geometric:

$$
\delta=\lim _{n \rightarrow \infty} \frac{r_{n}-r_{n-1}}{r_{n+1}-r_{n}}=4.669 \ldots \text { Feigenbaum's constant }
$$

For $r>r_{\infty}:$ CHAOS

- Aperiodic long-term dynamics
- Sequence $\left\{x_{n}\right\}$ never settles down to a fixed point or periodic orbit
- Sensitive dependence on initial conditions: two trajectories starting close together rapidly diverge from each other.
(\Longrightarrow long-term prediction impossible: small uncertainties are amplified exponentially fast)
- Irregularity due to nonlinearity, not noise.
- Chaos: Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.

Let us do some Maple to check the previous statements.

First we will graph some iterates for $r=0.8,1.5,2.0,2.8,3.10$,
$3.2,3.5,3.55,3.565,3.6,3.84,4.0$.

Then we draw some cobweb diagrams for the logistic map.

