1. Problem 1

SOLUTION:

(a) The individual learns most rapidly when $\frac{dL}{dt}$ is maximum, i.e., at L = 0. (b) At the given instant, Beth's learning rate is $= 0.2 \cdot 0.5 = 0.1$ and Eric's learning rate is $= 0.1 \cdot 0.75 = 0.075$. So Beth is learning faster.

2. Problem 2

SOLUTION:

(a) The fixed points are at $p^* = 0$ and $p^* = 100$. Since f'(0) = 2000 > 0, $p^* = 0$ is unstable and since f'(100) = -2000 < 0 $p^* = 100$ is stable.

(b) The term 10l shifts the parabola down, the fish will not go extinct as long as the parabola is not completely negative. The bifurcation point occurs when the parabola has a double root. This happens when the discriminant is 0.

 $2000^2 - 4 \cdot (-20) \cdot (-10l) = 0 \implies l = \frac{2000^2}{800} = 5000$ licenses. The only equilibrium fish population will be given by $-20p^2 + 2000p - 50000 = 0 \implies p^* = 50.$

3. Problem 3

SOLUTION: (a) $\dot{y} = -\frac{y}{a} +$ Case 1: a > 0

One fixed point at $y^* = b$ and it is stable. Case 2: a < 0

One fixed point at $y^* = b$ and it is unstable.

(b) Case 1: If a > 0, then regardless of b any solution will tend toward b as $t \longrightarrow \infty$.

Case 2: If a < 0, then regardless of b any solution such that $y(0) \neq b$ will tend to $+\infty$ if y(0) > b and tend to $-\infty$ if y(0) < b. (c) Let u = b - y then $\dot{u} = -\dot{y} = -\frac{b - y}{a} = -\frac{1}{a}u$ and hence $u(t) = u(0)e^{-\frac{t}{a}}$. Writing the solution in terms of y, we get $b - y(t) = (b - y(0))e^{-\frac{t}{a}} \Longrightarrow y(t) = b - (b - y(0))e^{-\frac{t}{a}}.$

Clearly we can see from the solution that if a > 0, then $\lim_{t \to \infty} y(t) = b$ and if a < 0 then $\lim_{t \to \infty} y(t) = \pm \infty$ depending on whether b - y(0) < 0 or b - y(0) > 0.

4. Problem 4

SOLUTION:

Case 1: $\lambda \leq 0$ then we have one fixed point at $x^* = \lambda$ and it is unstable. A typical graph is

Case 2: $\lambda > 0$ and $\lambda \neq 1$ then we have three fixed points at $\lambda, \pm \sqrt{\lambda}$. A typical graph is

Case 2: $\lambda = 1 \Longrightarrow x = (x-1)^2(x+1)$ so we have two fixed points at ± 1 .

5. Problem 5

SOLUTION: $f(N) = -aN\ln(bN)$ and $f'(N) = -a(\ln(bN) + 1)$ To find fixed points we solve f(N) = 0 to get $N^* = 0$ and $N^* = \frac{1}{b}$. $f'(0) = \lim_{N \longrightarrow 0} (-a(\ln(bN) + 1)) = +\infty \Longrightarrow N^* = 0$ is unstable. $f'(\frac{1}{b}) = -a < 0 \Longrightarrow N^* = \frac{1}{b}$ is stable.

6. Problem 6

SOLUTION:

(a) See Homework set 2 solutions

(b) Since $rx - \ln(1+x) = (r-1)x + \frac{1}{2}x^2 + O(x^3)$ we expect a transcritical bifurcation at r = 1. Let us complete the analysis graphically. We will graph both rx and $\ln(1+x)$.

We can clearly see that $x^* = 0$ is always a fixed point. When r < 1, $x^* = 0$ is stable and the second fixed point is unstable and when r > 1, $x^* = 0$ is unstable and the second fixed point is stable. This shows we do indeed have a transcritical bifurcation at r = 1. The bifurcation diagram is given below:

(c) By an easy change of variable we could bring the given problem into the supercritical pitchfork bifurcation normal form. The following graphical analysis confirms this fact.

When $r \leq 0$, we have one fixed point given by $x^* = 0$ (stable),

When r > 0, we have three fixed points $x^* = 0$ that is unstable and two other fixed points $x^* = \pm \frac{\sqrt{r}}{2}$ that are both stable. The bifurcation diagram is

7. Problem 7

SOLUTION: In this case the map is given by $F(x) = -2x - x^2$. To find the fixed points we solve F(x) = x, so

 $\begin{aligned} -2x - x^2 &= x \implies x^* = 0, x^* = -3. \\ \text{To find the points of period 2 , we solve } (F \circ F)(x) &= x \text{ or } 4x + 2x^2 - (-2x - x^2)^2 = 4x - 2x^2 - 4x^3 - x^4 = x. \\ \text{Simplifying we get } 3x - 2x^2 - 4x^3 - x^4 &= 0. \\ \text{Since we know already two roots 0 and } -3, \text{ to find the last two roots we solve } \frac{3x - 2x^2 - 4x^3 - x^4}{x(x+3)} = 0, \\ \text{We get the solutions : } -\frac{1}{2}\sqrt{5} - \frac{1}{2}, \frac{1}{2}\sqrt{5} - \frac{1}{2}. \end{aligned}$

8. Problem 8

SOLUTION:

f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 0, so the sequence is $0, 1, 2, 3, 4, 0, 1, 2, 3, 4, \cdots$ We conclude that 0 is on a period 5 cycle. To determine the stability of the cycle we need to compute $(f^5)'(0)$. We have $(f^5)'(0) = f'(0)f'(1)f'(2)f'(3)f'(4) = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 2 = 2 \implies$ cycle is repelling.

9. Problem 9

SOLUTION: Clearly $\tan x = x$ has infinitely many solutions so there are infinitely many fixed points.

The fixed points at 0 is neutral since $\frac{d}{dx} \tan x \Big|_{x=0} = \sec^2 0 = 1$. An easy graphical analysis shows that it is repelling. At all the other points $\sec^2 x^* > 1$ and hence they are repelling.

10. Problem 10.

SOLUTION:

This bifurcation is a pitchfork bifurcation. For $\alpha \leq 1$, the origin is an attracting fixed point since $F'_{\alpha}(0) = \alpha$. When $\alpha = 1$, the graph is tangent to the diagonal, but the graph shows that 0 is still attracting. For $\alpha > 1$, two attracting fixed points emerge and the origin becomes a repelling fixed point.