SUMMER 2007

67-717 TEST 1 SOLUTIONS

1. Problem 1

SOLUTION:

(a) The individual learns most rapidly when $\frac{d L}{d t}$ is maximum, i.e, at $L=0$.
(b) At the given instant, Beth's learning rate is $=0.2 \cdot 0.5=0.1$ and Eric's learning rate is $=0.1 \cdot 0.75=0.075$. So Beth is learning faster.

2. Problem 2

SOLUTION:

(a) The fixed points are at $p^{*}=0$ and $p^{*}=100$. Since $f^{\prime}(0)=2000>0, p^{*}=0$ is unstable and since $f^{\prime}(100)=-2000<0$ $p^{*}=100$ is stable.
(b) The term $10 l$ shifts the parabola down, the fish will not go extinct as long as the parabola is not completely negative. The bifurcation point occurs when the parabola has a double root. This happens when the discriminant is 0 .
$2000^{2}-4 \cdot(-20) \cdot(-10 l)=0 \Longrightarrow l=\frac{2000^{2}}{800}=5000$ licenses. The only equilibrium fish population will be given by
$-20 p^{2}+2000 p-50000=0 \Longrightarrow p^{*}=50$.
3. Problem 3

SOLUTION:

(a) $\dot{y}=-\frac{y}{a}+\frac{b}{a}$

Case 1: $a>0$

One fixed point at $y^{*}=b$ and it is stable.
Case 2: $a<0$

One fixed point at $y^{*}=b$ and it is unstable.
(b) Case 1: If $a>0$, then regardless of b any solution will tend toward b as $t \longrightarrow \infty$.

Case 2: If $a<0$, then regardless of b any solution such that $y(0) \neq b$ will tend to $+\infty$ if $y(0)>b$ and tend to $-\infty$ if $y(0)<b$.
(c) Let $u=b-y$ then $\dot{u}=-\dot{y}=-\frac{b-y}{a}=-\frac{1}{a} u$ and hence $u(t)=u(0) e^{-\frac{t}{a}}$. Writing the solution in terms of y, we get $b-y(t)=(b-y(0)) e^{-\frac{t}{a}} \Longrightarrow y(t)=b-(b-y(0)) e^{-\frac{t}{a}}$.

Clearly we can see from the solution that if $a>0$, then $\lim _{t \rightarrow \infty} y(t)=b$ and if $a<0$ then $\lim _{t \rightarrow \infty} y(t)= \pm \infty$ depending on whether $b-y(0)<0$ or $b-y(0)>0$.
4. Problem 4

SOLUTION:

Case 1: $\lambda \leq 0$ then we have one fixed point at $x^{*}=\lambda$ and it is unstable. A typical graph is

Case 2: $\lambda>0$ and $\lambda \neq 1$ then we have three fixed points at $\lambda, \pm \sqrt{\lambda}$. A typical graph is

Case 2: $\lambda=1 \Longrightarrow \dot{x}=(x-1)^{2}(x+1)$ so we have two fixed points at ± 1.

5. Problem 5

SOLUTION: $f(N)=-a N \ln (b N)$ and $f^{\prime}(N)=-a(\ln (b N)+1)$
To find fixed points we solve $f(N)=0$ to get $N^{*}=0$ and $N^{*}=\frac{1}{b}$.
$f^{\prime}(0)=\lim _{N \longrightarrow 0}(-a(\ln (b N)+1))=+\infty \Longrightarrow N^{*}=0$ is unstable.
$f^{\prime}\left(\frac{1}{b}\right)=-a<0 \Longrightarrow N^{*}=\frac{1}{b}$ is stable.
6. Problem 6

SOLUTION:

(a) See Homework set 2 solutions
(b) Since $r x-\ln (1+x)=(r-1) x+\frac{1}{2} x^{2}+O\left(x^{3}\right)$ we expect a transcritical bifurcation at $r=1$. Let us complete the analysis graphically. We will graph both $r x$ and $\ln (1+x)$.

We can clearly see that $x^{*}=0$ is always a fixed point. When $r<1, x^{*}=0$ is stable and the second fixed point is unstable and when $r>1, x^{*}=0$ is unstable and the second fixed point is stable. This shows we do indeed have a transcritical bifurcation at $r=1$.The bifurcation diagram is given below:

(c) By an easy change of variable we could bring the given problem into the supercritical pitchfork bifurcation normal form. The following graphical analysis confirms this fact.

When $r \leq 0$, we have one fixed point given by $x^{*}=0$ (stable),
When $r>0$, we have three fixed points $x^{*}=0$ that is unstable.and two other fixed points $x^{*}= \pm \frac{\sqrt{r}}{2}$ that are both stable. The bifurcation diagram is

7. Problem 7

SOLUTION: In this case the map is given by $F(x)=-2 x-x^{2}$. To find the fixed points we solve $F(x)=x$,so $-2 x-x^{2}=x \Longrightarrow x^{*}=0, x^{*}=-3$.
To find the points of period 2 , we solve $(F \circ F)(x)=x$ or $4 x+2 x^{2}-\left(-2 x-x^{2}\right)^{2}=4 x-2 x^{2}-4 x^{3}-x^{4}=x$. Simplifying we get $3 x-2 x^{2}-4 x^{3}-x^{4}=0$. Since we know already two roots 0 and -3 , to find the last two roots we solve $\frac{3 x-2 x^{2}-4 x^{3}-x^{4}}{x(x+3)}=0$,
We get the solutions : $-\frac{1}{2} \sqrt{5}-\frac{1}{2}, \frac{1}{2} \sqrt{5}-\frac{1}{2}$.
8. Problem 8

SOLUTION:

$f(0)=1, f(1)=2, f(2)=3, f(3)=4, f(4)=0$, so the sequence is $0,1,2,3,4,0,1,2,3,4, \cdots$
We conclude that 0 is on a period 5 cycle. To determine the stability of the cycle we need to compute $\left(f^{5}\right)^{\prime}(0)$.
We have $\left(f^{5}\right)^{\prime}(0)=f^{\prime}(0) f^{\prime}(1) f^{\prime}(2) f^{\prime}(3) f^{\prime}(4)=1 \cdot 1 \cdot 1 \cdot 1 \cdot 2=2 \Longrightarrow$ cycle is repelling.

9. Problem 9

SOLUTION: Clearly $\tan x=x$ has infinitely many solutions so there are infinitely many fixed points.
The fixed points at 0 is neutral since $\left.\frac{d}{d x} \tan x\right|_{x=0}=\sec ^{2} 0=1$. An easy graphical analysis shows that it is repelling.
At all the other points $\sec ^{2} x^{*}>1$ and hence they are repelling.
10. Problem 10.

SOLUTION:

This bifurcation is a pitchfork bifurcation. For $\alpha \leq 1$, the origin is an attracting fixed point since $F_{\alpha}^{\prime}(0)=\alpha$. When $\alpha=1$, the graph is tangent to the diagonal, but the graph shows that 0 is still attracting. For $\alpha>1$, two attracting fixed points emerge and the origin becomes a repelling fixed point.

