
Problem 6.2.2
(a) Since f and g are clearly continuously di¤erentiable (they are polynomial functions), the existence
and uniqueness theorem is valid inside D:
(b) If x(t) = sin t and y(t) = cos t then

:
x(t) = cos t = y(t) and

:
y(t) = � sin t = �x(t):

(remember x2(t) + y2(t) = 1):So we conclude that x(t) = sin t; y(t) = cos t is a solution of the system.
The orbit of this solution is the unit circle.
(c) Any solution that starts inside the unit circle must stay inside since by uniqueness it cannot intersect
the unit circle because the unit circle is the orbit of the solution in part (b).

Problem 6.3.4
The �xed points are solutions to the system y + x� x3 = 0 and �y = 0: We obtain (�1; 0) and (0,0).

The Jacobian matrix is
�
1� 3x2 1
0 �1

�
:

At (�1; 0); J =
�
�2 1
0 �1

�
so the eigenvalues are �2;�1 and hence we have stable nodes there.

At (0,0), J =
�
1 1
0 �1

�
; the eigenvalues are 1, �1 and hence we have a saddle there.

Problem 6.3.11
(a) We can solve for r easily: r0(t) = �r(t) =) r(t) = r0e

�t: Now �0(t) =
1

ln r(t)
=

1

ln r0 � t
and this implies that �(t) = �0 � ln jln r0 � tj+ ln jln r0j :
(b) Clearly lim

t�!1
r(t) = 0 and lim

t!1
j�(t)j =1: This shows that the origin is a stable spiral

for the nonlinear system.
(c) Let us write the system in rectangular coordinates:

x(t) = r(t) cos �(t) =) x0(t) = r0(t) cos �(t)� r(t) �0(t) sin �(t) = �r(t)x(t)
r(t)

� r(t) 1

ln r(t)

y(t)

r(t)
:

Therefore x0(t) = �x(t)� y(t)

ln
p
x2(t) + y2(t)

: Similarly

y(t) = r(t) sin �(t) =) y0(t) = r0(t) sin �(t) + r(t) �0(t) cos �(t) = �y(t) + x(t)

ln
p
x2(t) + y2(t)

:

We conclude that in rectangular coordinates, the system is x0 = �x+ 2y

ln(x2 + y2)
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and y0 = �y + 2x

ln(x2 + y2)
:

(d) If we linearize at the origin, the linearized system is x0 = �x; y0 = �y: . This is true because
2y

ln(x2 + y2)
and

2x

ln(x2 + y2)
are higher-order terms, i.e, they go to zero faster than r: Clearly

2y

ln(x2 + y2)

1

r
=
sin �

ln r
�! 0 as r �! 0:and similarly for the second term.

Note that the linearized system erroneously predicts that the origin is a stable star.

6.4.3
The �xed points are solutions of x(3� 2x� 2y) = 0 and y(2� x� y) = 0:
These solutions are (0,0), (0,2) and

(3/2,0). The jacobian is
�
3� 4x� 2y �2x

�x 2� x� 2y

�
:

At (0,0), J =
�
3 0
0 2

�
and hence we have an unstable node.

At (0,2), J =
�
�1 0
0 �2

�
and hence we have a stable node.

At (3/2,0), J =
�

�3 �3
�3=2 1=2

�
; since the determinant is negative, there is a saddle at this point.

The bassin of attraction of the the node (0,2) is all the friat quadrant except the x-axis.

6.5.1

(a) The �xed points are at (0,0), (�1; 0) and (1; 0): The Jacobian is J =
�

0 1
3x2 � 1 0

�
At (0,0), J =

�
0 1
�1 0

�
hence a center. At (�1; 0); J =

�
0 1
2 0

�
hence saddles.

(b) Clearly if we multiply by x0 both sides of the di¤erential equation, we get that

x0x00 � x0x3 + xx0 = 0: This is the same as d
dt
(
1

2
x02 +

1

2
x2 � 1

4
x4) = 0 and hence

a conserved quantity is E(x; x0) =
1

2
x02 +

1

2
x2 � 1

4
x4 which is the sum of kinetic and potential energies.

(c)
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7.1.2

7.2.7

(a)
@(y + 2xy)

@y
= 1 + 2x;

@(x+ x2 � y2)
@x

= 1 + 2x; This implies that the system is a gradient system.

(b)
@V

@x
= �y � 2xy =) V (x; y) = �xy � x2y + A(y); also @V

@y
= �x� x2 + y2 =) V = �xy � x2y +

y3

3
+B(x):

By inspection it su¢ ces to take V (x; y) = �xy � x2y + y
3

3
:

(c) The phase portrait is the gradient �eld of the V:
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7.2.12

Clearly we need to choose a;m; n to be positive to force V > 0: Let us now compute
dV

dt
:

dV

dt
=

@V

@x

dx

dt
+
@V

@y

dy

dt
= mxm�1(�x+ 2y3 � 2y4) + anyn�1(�x� y + xy)

= �mxm � anyn + 2mxm�1y3(1� y)� anyn�1x(1� y)
= �mxm � anyn + (1� y)(2mxm�1y3 � anyn�1x)

If we select n� 1 = 3 or n = 4; and m� 1 = 1 or m = 2 and �nally 2m� an = 0 or a = 1, we get that
@V

@t
= �mxm � anyn = �2x2 � 4y4 < 0:

5.1.9
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(b)
�
x = �y and �

y = �x =) �
xx = �xy and y �

y = �xy =) �
xx� y

�
y =0 =) 1

2
(x2 � y2) = Constant

=) x2 � y2 = C:
(c) Clearly the stable manifold is the line y = x and the unstable manifold the line y = �x:
(d) u = x+ y =) du

dt
=
dx

dt
+
dy

dt
= �(x+ y) = �u =) u(t) = u0e

�t:

v = x� y =) dv

dt
=
dx

dt
� dy
dt
= x� y = v =) v(t) = v0e

t

(e) The stable manifold is v = 0 and the unstable one is u = 0:
(f) From the given equation we have that

x(t) =
1

2
(u(t) + v(t)) =

1

2
(x0 + y0)e

�t +
1

2
(x0 � y0)et = x0 cosh t� y0 sinh t

y(t) =
1

2
(u(t)� v(t)) = 1

2
(x0 + y0)e

�t � 1
2
(x0 � y0)et = x0 sinh t+ y0 cosh t

Problem 5.2.1
SOLUTION:
(a) �2 � ��+� = �2 � 5�+ 6 = 0 =) �1 = 2; �2 = 3:

(A� 2I)�!v 1 =
�!
0 =)

�
2 �1
2 �1

� �
a
b

�
=

�
0
0

�
=) �!v 1 =

�
a
b

�
=

�
1
2

�
(A� 3I)�!v 2 =

�!
0 =)

�
1 �1
2 �2

� �
a
b

�
=

�
0
0

�
=) �!v 2 =

�
a
b

�
=

�
1
1

�
(b) The general solution is �

x(t)
y(t)

�
= C1e

2t

�
1
2

�
+ C2e

3t

�
1
1

�
:

(c) The �xed point at the origin is an unstable node.

(d) Substituting
�
x(0)
y(0)

�
=

�
3
4

�
in the general solution, we get the system

C1

�
1
2

�
+ C2

�
1
1

�
=

�
3
4

�
Clearly the solution is C1 = 1 and C2 = 2: So the solution is�

x(t)
y(t)

�
=

�
e2t + 2e3t

2e2t + 2e3t

�
Problem 5.2.12
SOLUTION:
(a) Let x = I and y =

�
I then the equation can be rewritten as" �

x
�
y

#
=

�
0 1

�1=LC �R=L

� �
x
y

�

(b) The eigenvalues are �1;2 =
�R
L
�
r
R2

L2
� 4

LC
2

=
�RC �

p
R2C2 � 4LC
2LC

:

Suppose that R > 0
Case1: If R2C � 4L > 0, then clearly both eigenvalues are negative and we have stable nodes. This

implies
that the origin is asymptotically stable.
Case 2: If R2C � 4L < 0; then the eigenvalues have negative real part and this means we have stable

spirals.
This also implies that the origin is asymptotically stable.

Case 3: If R2C � 4L = 0; both eigenvalues are negative and equal to � R
2L
: Hence we have a stable

degenerate
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node.
Now suppose that R = 0, then the eigenvalues are purely imaginary and hence we have a center and this

implies
that the origin is neutrally stable.
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