1. Problem 4.1.2

SOLUTION: To find the fixed points we solve $f(\theta)=1+2 \cos \theta=0$. The solutions are $\theta^{*}=\frac{2}{3} \pi$ and $\theta^{*}=\frac{4}{3} \pi$. Using linear stability analysis we have:
$\left.f^{\prime}(\theta)\right|_{\theta^{*}=\frac{2}{3} \pi}=-\left.2 \sin \theta\right|_{\theta^{*}=\frac{2}{3} \pi}=-\sqrt{3}<0 \Longrightarrow \theta^{*}=\frac{2}{3} \pi$ is stable. and
$\left.f^{\prime}(\theta)\right|_{\theta^{*}=\frac{4}{3} \pi}=-\left.2 \sin \theta\right|_{\theta^{*}=\frac{4}{3} \pi}=\sqrt{3}>0 \Longrightarrow \theta^{*}=\frac{4}{3} \pi$ is unstable.

2. Problem 4.1.5

SOLUTION: To find the fixed points we solve $f(\theta)=\sin \theta+\cos \theta=0$. The solutions are $\theta^{*}=\frac{3 \pi}{4}$ and $\theta^{*}=\frac{7 \pi}{4}$.
Using linear stability analysis we have:
$\left.f^{\prime}(\theta)\right|_{\theta^{*}=\frac{3 \pi}{4}}=\left.(\cos \theta-\sin \theta)\right|_{\theta^{*}=\frac{3 \pi}{4}}=-\sqrt{2}<0 \Longrightarrow \theta^{*}=\frac{3 \pi}{4}$ is stable.and
$\left.f^{\prime}(\theta)\right|_{\theta^{*}=\frac{7 \pi}{4}}=\left.(\cos \theta-\sin \theta)\right|_{\theta^{*}=\frac{7 \pi}{4}}=\sqrt{2}>0 \Longrightarrow \theta^{*}=\frac{7 \pi}{4}$ is unstable.
3. Problem 4.3.1

SOLUTION: Let $x=\sqrt{r} \tan \theta$ then $d x=\sqrt{r} \sec ^{2} \theta d \theta$, also $r+x^{2}=r\left(1+\tan ^{2} \theta\right)=r \sec ^{2} \theta$, substituting we get

$$
T_{\text {bottleneck }}=\int_{-\infty}^{\infty} \frac{d x}{r+x^{2}}=\int_{-\pi / 2}^{\pi / 2} \frac{\sqrt{r} \sec ^{2} \theta d \theta}{r \sec ^{2} \theta}=\frac{1}{\sqrt{r}} \int_{-\pi / 2}^{\pi / 2} d \theta=\frac{\pi}{\sqrt{r}}
$$

4. Problem 4.3.2

SOLUTION:

(a) $u=\tan \frac{\theta}{2} \Longrightarrow \theta=2 \arctan u \Longrightarrow d \theta=\frac{2}{1+u^{2}} d u$.
(b) $\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}=2 \tan \frac{\theta}{2} \cdot \frac{1}{\sec ^{2} \frac{\theta}{2}}=\frac{2 u}{1+u^{2}}$.
(c) As $u \longrightarrow \pm \infty$, $\arctan u \longrightarrow \pm \pi / 2$ and hence by part (a) $\theta \longrightarrow \pm \pi$.
(d) With respect to u the integral becomes

$$
T=\int_{-\pi}^{\pi} \frac{d \theta}{\omega-a \sin \theta}=\int_{-\infty}^{\infty} \frac{2 /\left(1+u^{2}\right)}{\omega-2 a u /\left(1+u^{2}\right)} d u=\int_{-\infty}^{\infty} \frac{2}{\omega u^{2}-2 a u+\omega} d u
$$

(e) $\omega u^{2}-2 a u+\omega=\omega\left(u^{2}-2 \frac{a}{\omega} u+1\right)=\omega\left[\left(u-\frac{a}{\omega}\right)^{2}+\frac{\omega^{2}-a^{2}}{\omega^{2}}\right]$ so

$$
T=\frac{2}{\omega} \int_{-\infty}^{\infty} \frac{1}{\frac{\omega^{2}-a^{2}}{\omega^{2}}+\left(u-\frac{a}{\omega}\right)^{2}} d u=\frac{2}{\omega} \frac{\pi}{\frac{\sqrt{\omega^{2}-a^{2}}}{\omega}}=\frac{2 \pi}{\sqrt{\omega^{2}-a^{2}}}
$$

where we used the result of problem 4.2 .1 by letting $x=u-\frac{a}{\omega}$ and $r=\frac{\omega^{2}-a^{2}}{\omega^{2}}$.

5. Problem 4.2.3

SOLUTION: If we let θ_{h}, θ_{m} represent the positions of the hour hand and minute hand respectively then $\frac{d \theta_{h}}{d t}=\frac{2 \pi}{12}$ and $\frac{d \theta_{m}}{d t}=\frac{2 \pi}{1}$ since it takes 12 hours for the hour hand to go around and it takes 1 hour for the minute hand to do so. If we let $\theta=\theta_{m}-\theta_{h}$ then

$$
\frac{d \theta}{d t}=\frac{d \theta_{m}}{d t}-\frac{d \theta_{h}}{d t}=2 \pi(1-1 / 12)
$$

So θ changes by 2π in time $\frac{2 \pi}{2 \pi(1-1 / 12}=\frac{12}{11}$ of an hour. So the hands will be aligned at 12:00 $+\frac{12}{11} \mathrm{hrs}$ or $1: 05: 27$.

6. Problem 4.3.3

SOLUTION:To find the fixed points we solve $f(\theta)=0$. We get

$$
\begin{aligned}
\mu \sin \theta-\sin 2 \theta & =0 \\
\sin \theta(\mu-2 \cos \theta) & =0
\end{aligned}
$$

the fixed points are $\theta^{*}=0$ and π and $\theta^{*}=\arccos \frac{\mu}{2}$ which exists only for $|\mu| \leq 2$. Using linear stability analysis we get

$$
f^{\prime}(\theta)=\mu \cos \theta-2 \cos 2 \theta
$$

this implies that
$f^{\prime}(0)=\mu-2 \Longrightarrow \theta^{*}=0$ is stable for $\mu<2$ and unstable for $\mu>2$.
$f^{\prime}(\pi)=-\mu-2 \Longrightarrow \theta^{*}=\pi$ is stable for $\mu>-2$ and unstable for $\mu<-2$.Finally studying the fixed point θ^{*} such that $\cos \theta^{*}=\frac{\mu}{2}$ gives us $f^{\prime}\left(\theta^{*}\right)=\mu \cdot \frac{\mu}{2}-2\left(2 \cdot \frac{\mu^{2}}{4}-1\right)=2-\frac{1}{2} \mu^{2} \Longrightarrow \theta^{*}$ is unstable since $|\mu| \leq 2$.
We conclude that we have a subcritical pitchfork bifurcation at $\mu=2$: When $\mu>2, \theta^{*}=0$ is unstable and when $\mu<2, \theta^{*}=0$ becomes stable and two other unstable fixed points at $\theta^{*}=\operatorname{Arccos} \frac{\mu}{2}$ and $\theta^{*}=-\operatorname{Arccos} \frac{\mu}{2}$ are born. We also have a subcritical pitchfork bifurcation at $\mu=-2$: When $\mu<-2, \theta^{*}=\pi$ is unstable and when $\mu>-2$, $\theta^{*}=\pi$ becomes stable and two other unstable fixed points at $\theta^{*}=\pi-\operatorname{Arccos} \frac{|\mu|}{2}$ and $\theta^{*}=\pi+\operatorname{Arccos} \frac{|\mu|}{2}$ are born. The graphical analysis is given below:

7. Problem 10.1.3

SOLUTION: For every initial condition x_{0}, we have $\lim _{n \rightarrow \infty} x_{n}=+\infty$.
8. Problem 10.1.6

SOLUTION: Very complicated dynamics. Play around with the two Maple worksheets for more details.
9. Problem 10.1.8

SOLUTION: For every initial condition x_{0}, we have $\lim _{n \rightarrow \infty} x_{n}=0$.
10. Problem 10.1.12

SOLUTION:

(a) $f\left(x_{n}\right)=x_{n}-\frac{x_{n}^{2}-4}{2 x_{n}}=\frac{x_{n}}{2}+\frac{2}{x_{n}}$.
(b) Solve $f(x)=x$ to get $\frac{x}{2}+\frac{2}{x}=x \Longrightarrow x^{2}-4=0 \Longrightarrow x^{*}= \pm 2$.
(c) $f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}} \Longrightarrow f^{\prime}\left(x^{*}\right)=f^{\prime}(\pm 2)=0 \Longrightarrow$ the fixed points are superstable.
(d) $x_{1}=2.50000, x_{2}=2.05000, x_{3}=2.00060, x_{4}=2.00000$.

11. Problem 10.3.4

SOLUTION:

(a) $f(x)=x \Longrightarrow x^{2}-x+c=0 \Longrightarrow x_{+}^{*}=\frac{1+\sqrt{1-4 c}}{2}$ and $x_{-}^{*}=\frac{1-\sqrt{1-4 c}}{2}$.

We will have fixed points only if $c \leq \frac{1}{4}$. Now since $f^{\prime}(x)=2 x$ we have
$f^{\prime}\left(x_{+}^{*}\right)=1+\sqrt{1-4 c}>1 \Longrightarrow x_{+}^{*}$ is repelling for all $c<\frac{1}{4}$
$f^{\prime}\left(x_{-}^{*}\right)=1-\sqrt{1-4 c}$ so $-1<1-\sqrt{1-4 c}<1 \Longrightarrow 0<\sqrt{1-4 c}<2 \Longrightarrow-\frac{3}{4}<c<\frac{1}{4}$.
So x_{-}^{*} is attracting if $-\frac{3}{4}<c<\frac{1}{4}$ and repelling if $c<-\frac{3}{4}$.
(b) We have a saddle-node bifurcation at $c=\frac{1}{4}$ since at that point two fixed points appear. We also have another bifurcation at $c=\frac{-3}{4}$ since at that point x_{-}^{*} loses stability. It will turn out to be a period doubling bifurcation.
(c) We find the 2-cycles by solving $(f \circ f)(x)=x$ or $\left(x^{2}+c\right)^{2}+c=x$. This implies that $x^{4}+2 c x^{2}-x+c^{2}+c=0$. We know that x_{+}^{*} and x_{-}^{*} are roots, so to find the 2 -cycles we solve

$$
\frac{x^{4}+2 c x^{2}-x+c^{2}+c}{x^{2}-x+c}=x^{2}+x+c+1=0
$$

We obtain

$$
p_{ \pm}=\frac{-1 \pm \sqrt{-3-4 c}}{2}
$$

Note that $p_{ \pm}$exist as real number only if $c \leq \frac{-3}{4}$. Thus a 2-cycle appears precisely when c decreases through $c=-3 / 4$.
To find where the 2-cycle is stable we have to find out where $\left|f^{\prime}\left(p_{+}\right) f^{\prime}\left(p_{-}\right)\right|<1$.
$\left|f^{\prime}\left(p_{+}\right) f^{\prime}\left(p_{-}\right)\right|<1=|(-1+\sqrt{-3-4 c})(-1-\sqrt{-3-4 c})|<1 \Longrightarrow|4+4 c|<1 \Longrightarrow-5 / 4<c<-3 / 4$.
The 2-cycle is superstabe when $\left|f^{\prime}\left(p_{+}\right) f^{\prime}\left(p_{-}\right)\right|=0$ and this happens for $c=-1$.
(d)

12. Find all fixed points and periodic points of period 2 for each of the given functions:
(a) $F(x)=-x+2$
(b) $F(x)=-2 x-x^{2}$.

SOLUTION:

(a) Fixed points: Solve $F(x)=x$ to get $x^{*}=1$.

Period 2 points: Solve $(F \circ F)(x)=x$ to get $-(-x+2)+2=x$ and hence every point is a period 2 point.
(b) Fixed points: Solve $F(x)=x$ to get $-2 x-x^{2}=x$ and hence $x^{*}=0$ and $x^{*}=-3$.

Period 2 points: Solve $(F \circ F)(x)=x$ to get

$$
\begin{aligned}
-2\left(-2 x-x^{2}\right)-\left(-2 x-x^{2}\right)^{2} & =x \\
4 x-2 x^{2}-4 x^{3}-x^{4} & =x \\
x^{4}+4 x^{3}+2 x^{2}-3 x & =0 \\
x(x+3)\left(x^{2}+x-1\right) & =0
\end{aligned}
$$

So the period 2 points are the solutions of $x^{2}+x-1=0$, which are $-\frac{1}{2} \sqrt{5}-\frac{1}{2}, \frac{1}{2} \sqrt{5}-\frac{1}{2}$.
13. Describe the fate of the orbit of each of the following seeds under iteration of the function

$$
T(x)= \begin{cases}2 x, & \text { if } x<1 / 2 \\ 2-2 x, & \text { if } x \geq 1 / 2\end{cases}
$$

(a) $2 / 3$
(b) $1 / 6$
(c) $2 / 5$
(d) $1 / 8$
(e) $1 / 4$
(f) $1 / 2$.

SOLUTION:

(a) Clearly $T(2 / 3)=2 / 3$ so it is a fixed point.
(b) $T(1 / 6)=1 / 3, T(1 / 3)=2 / 3, T(2 / 3)=2 / 3$.
(c) Period 2 cycle: $T(2 / 5)=4 / 5, T(4 / 5)=2 / 5$.
(d) $T(1 / 8)=1 / 4, T(1 / 4)=1 / 2, T(1 / 2)=1, T(1)=0, T(0)=0, \cdots$
(e) (f) See (d).
14. For each of the given functions, find all fixed points and determine whether they are attracting, repelling, or neutral
(a) $F(x)=(\pi / 2) \sin x$
(b) $F(x)=3 x(1-x)$.

SOLUTION:
(a) Fixed points: Solve $F(x)=x$ to get $x^{*}=0, x^{*}= \pm \frac{\pi}{2}$ Since $F^{\prime}(0)=\frac{\pi}{2}>1, x^{*}=0$ is repelling.

Also since $F^{\prime}\left(\pm \frac{\pi}{2}\right)=0, x^{*}= \pm \frac{\pi}{2}$ are attracting.
(b) Fixed points: Solve $F(x)=x$ to get $x^{*}=0$ and $x^{*}=\frac{2}{3}$.
$F^{\prime}(0)=3>1 \Longrightarrow x^{*}=0$ is repelling. $\quad F^{\prime}(2 / 3)=3-4=-1 \Longrightarrow x^{*}=\frac{2}{3}$ is neutral.
15. What can you say about fixed points for $F_{c}(x)=c e^{x}$ with $c>0$? What does the graph of F_{c} tell you about these fixed points?

Note that when $c=1 / e, F_{c}(1)=1$.
SOLUTION: Let us study the function $f(x)=F_{c}(x)-x=c e^{x}-x$. The derivative $f^{\prime}(x)=c e^{x}-1=0$ when $x=-\ln c$ and since $f^{\prime \prime}(-\ln c)=1>0$, we conclude that f has a minimum at $x=-\ln c$.
Case 1: If $f(-\ln c)>0$,i.e, when $1+\ln c>0$ or $c>1 / e$ then $F_{c}(x)-x=c e^{x}-x>0$ and we do not have fixed points.
Case 2: If $f(-\ln c)=0$, then $F_{c}(x)-x=c e^{x}-x \geq 0$ and equality is true only at $x=-\ln c$. therefore, there is only one fixed point where the graph of $F_{c}(x)=c e^{x}$ is tangent to $y=x$ from above. The fixed point is neutral.
Case 3: If $f(-\ln c)<0$, then $F_{c}(x)-x=0$ at two different points. Hence there are two fixed points. Since $F_{c}(x)$ is below $y=x$ between the two points, one is attracting and the other repelling. The graphical analysis follows:

16. Consider the function

$$
T(x)= \begin{cases}4 x, & \text { if } x<1 / 2 \\ 4-4 x, & \text { if } x \geq 1 / 2\end{cases}
$$

Does T have any attracting cycles? Why or why not?
SOLUTION: Suppose that T has an n-cycle , $x_{0}, x_{1, \cdots,} x_{n}=x_{0}$ then

$$
\left|\left(T^{n}\right)^{\prime}\left(x_{0}\right)\right|=\left|T^{\prime}\left(x_{0}\right) \cdot T^{\prime}\left(x_{1}\right) \cdots T^{\prime}\left(x_{n-1}\right)\right|=4^{n}
$$

Therefore the cycle is repelling.
17. Each function undergoes a bifurcation of fixed points at the given parameter value. In each case use analytic or qualitative methods to identify this bifurcation as a tangent, pitchfork, or period doubling bifurcation or as none of these. Discuss the behavior of orbits near the fixed points in question at, before, and after the bifurcation.
(a) $F_{\alpha}(x)=x+x^{2}+\alpha$,
$\alpha=0$
(b) $F_{\alpha}(x)=\alpha \sin x, \quad \alpha=1$.

SOLUTION:

(a) The fixed points are given by $x+x^{2}+\alpha=x$ or $x^{2}+\alpha=0$. Therefore for $\alpha>0$, there are no fixed points.

For $\alpha=0$, there is one fixed point; and for $\alpha<0$, there are two fixed points at $x= \pm \sqrt{-\alpha}$.
Differentiation yields $F_{\alpha}^{\prime}(x)=1+2 x$ and $F_{\alpha}^{\prime}(\pm \sqrt{-\alpha})=1 \pm 2 \sqrt{-\alpha}$.
Therefore for small enough $\alpha, 0<1-2 \sqrt{-\alpha}<1$ and $x=-\sqrt{-\alpha}$ is attracting. Since $1+2 \sqrt{-\alpha}>1, x=\sqrt{-\alpha}$ is repelling. For $\alpha=0, F_{\alpha}(x)$ is tangent to $y=x$ from above and therefore $x=0$ is neutral. The bifurcation is a saddle-node bifurcation.
(b) For α slightly smaller than 1 , the origin is the only fixed point and it is attracting. For $\alpha=1, F_{\alpha}(x)$ is tangent to $y=x$ and 0 is attracting. For $\alpha>1$, two more fixed points appear and they are attracting for α slightly larger than 1. The origin becomes a repelling fixed point. This is a pitchfork bifurcation.

