SUMMER 2007 67-717 HOMEWORK SET 2 SOLUTIONS

1. Problem 4.1.2

SOLUTION: To find the fixed points we solve $f(\theta) = 1 + 2\cos\theta = 0$. The solutions are $\theta^* = \frac{2}{3}\pi$ and $\theta^* = \frac{4}{3}\pi$. Using linear stability analysis we have:

$$\begin{aligned} f'(\theta)|_{\substack{\theta^* = \frac{2}{3}\pi}} &= -2\sin\theta|_{\substack{\theta^* = \frac{2}{3}\pi}} = -\sqrt{3} < 0 \Longrightarrow \theta^* = \frac{2}{3}\pi \text{ is stable. and} \\ f'(\theta)|_{\substack{\theta^* = \frac{4}{3}\pi}} &= -2\sin\theta|_{\substack{\theta^* = \frac{4}{3}\pi}} = \sqrt{3} > 0 \Longrightarrow \theta^* = \frac{4}{3}\pi \text{ is unstable.} \end{aligned}$$

2. Problem 4.1.5

SOLUTION: To find the fixed points we solve $f(\theta) = \sin \theta + \cos \theta = 0$. The solutions are $\theta^* = \frac{3\pi}{4}$ and $\theta^* = \frac{7\pi}{4}$. Using linear stability analysis we have:

$$\begin{aligned} f'(\theta)|_{\substack{\theta^* = \frac{3\pi}{4}}} &= \left(\cos\theta - \sin\theta\right)|_{\substack{\theta^* = \frac{3\pi}{4}}} = -\sqrt{2} < 0 \Longrightarrow \theta^* = \frac{3\pi}{4} \text{ is stable.and} \\ f'(\theta)|_{\substack{\theta^* = \frac{7\pi}{4}}} &= \left(\cos\theta - \sin\theta\right)|_{\substack{\theta^* = \frac{7\pi}{4}}} = \sqrt{2} > 0 \Longrightarrow \theta^* = \frac{7\pi}{4} \text{ is unstable.} \end{aligned}$$

3. Problem 4.3.1

SOLUTION: Let $x = \sqrt{r} \tan \theta$ then $dx = \sqrt{r} \sec^2 \theta d\theta$, also $r + x^2 = r(1 + \tan^2 \theta) = r \sec^2 \theta$, substituting we get

$$T_{\text{bottleneck}} = \int_{-\infty}^{\infty} \frac{dx}{r+x^2} = \int_{-\pi/2}^{\pi/2} \frac{\sqrt{r}\sec^2\theta d\theta}{r\sec^2\theta} = \frac{1}{\sqrt{r}} \int_{-\pi/2}^{\pi/2} d\theta = \frac{\pi}{\sqrt{r}}.$$

4. Problem 4.3.2

SOLUTION:

(a)
$$u = \tan \frac{\theta}{2} \Longrightarrow \theta = 2 \arctan u \Longrightarrow d\theta = \frac{2}{1+u^2} du.$$

(b) $\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \tan \frac{\theta}{2} \cdot \frac{1}{\sec^2 \frac{\theta}{2}} = \frac{2u}{1+u^2}.$

(c) As $u \to \pm \infty$, $\arctan u \to \pm \pi/2$ and hence by part (a) $\theta \to \pm \pi$.

(d) With respect to u the integral becomes

$$T = \int_{-\pi}^{\pi} \frac{d\theta}{\omega - a\sin\theta} = \int_{-\infty}^{\infty} \frac{2/(1+u^2)}{\omega - 2au/(1+u^2)} du = \int_{-\infty}^{\infty} \frac{2}{\omega u^2 - 2au + \omega} du$$

(e)
$$\omega u^2 - 2au + \omega = \omega (u^2 - 2\frac{a}{\omega}u + 1) = \omega \left[(u - \frac{a}{\omega})^2 + \frac{\omega^2 - a^2}{\omega^2} \right]$$
 so

$$T = \frac{2}{\omega} \int_{-\infty}^{\infty} \frac{1}{\frac{\omega^2 - a^2}{\omega^2} + (u - \frac{a}{\omega})^2} du = \frac{2}{\omega} \frac{\pi}{\frac{\sqrt{\omega^2 - a^2}}{\omega}} = \frac{2\pi}{\sqrt{\omega^2 - a^2}}$$

where we used the result of problem 4.2.1 by letting $x = u - \frac{a}{\omega}$ and $r = \frac{\omega^2 - a^2}{\omega^2}$.

5. Problem 4.2.3

SOLUTION: If we let θ_h, θ_m represent the positions of the hour hand and minute hand respectively then $\frac{d\theta_h}{dt} = \frac{2\pi}{12} \text{ and } \frac{d\theta_m}{dt} = \frac{2\pi}{1} \text{ since it takes 12 hours for the hour hand to go around and it takes 1 hour for the minute hand to do so. If we let <math>\theta = \theta_m - \theta_h$ then

$$\frac{d\theta}{dt} = \frac{d\theta_m}{dt} - \frac{d\theta_h}{dt} = 2\pi (1 - 1/12)$$

So θ changes by 2π in time $\frac{2\pi}{2\pi(1-1/12)} = \frac{12}{11}$ of an hour. So the hands will be aligned at $12:00 + \frac{12}{11}$ hrs or 1:05:27.

6. Problem 4.3.3

SOLUTION: To find the fixed points we solve $f(\theta) = 0$. We get

$$\mu \sin \theta - \sin 2\theta = 0$$

$$\sin \theta (\mu - 2\cos \theta) = 0$$

the fixed points are $\theta^* = 0$ and π and $\theta^* = \arccos \frac{\mu}{2}$ which exists only for $|\mu| \leq 2$. Using linear stability analysis we get

$$f'(\theta) = \mu \cos \theta - 2 \cos 2\theta$$

this implies that

 $f'(0) = \mu - 2 \Longrightarrow \theta^* = 0$ is stable for $\mu < 2$ and unstable for $\mu > 2$. $f'(0) = \mu - 2 \Longrightarrow \theta^* = 0$ is stable for $\mu < 2$ and unstable for $\mu > 2$. $f'(\pi) = -\mu - 2 \Longrightarrow \theta^* = \pi$ is stable for $\mu > -2$ and unstable for $\mu < -2$. Finally studying the fixed point θ^* such that $\cos \theta^* = \frac{\mu}{2}$ gives us $f'(\theta^*) = \mu \cdot \frac{\mu}{2} - 2(2 \cdot \frac{\mu^2}{4} - 1) = 2 - \frac{1}{2}\mu^2 \Longrightarrow \theta^*$ is unstable since $|\mu| \le 2$. We conclude that we have a **subcritical pitchfork bifurcation** at $\mu = 2$: When $\mu > 2$, $\theta^* = 0$ is unstable and when $\mu < 2$, $\theta^* = 0$ becomes stable and two other unstable fixed points at $\theta^* = Arc \cos \frac{\mu}{2}$ and $\theta^* = -Arc \cos \frac{\mu}{2}$ are born. We also have a subcritical pitchfork bifurcation at $\mu = -2$: When $\mu < -2$, $\theta^* = \pi$ is unstable and when $\mu > -2$, $\theta^* = \pi$ becomes stable and two other unstable fixed points at $\theta^* = \pi - \operatorname{Arc} \cos \frac{|\mu|}{2}$ and $\theta^* = \pi + \operatorname{Arc} \cos \frac{|\mu|}{2}$ are born.

The graphical analysis is given below:

7. Problem 10.1.3

SOLUTION: For every initial condition x_0 , we have $\lim_{n \to \infty} x_n = +\infty$.

8. Problem 10.1.6

SOLUTION: Very complicated dynamics. Play around with the two Maple worksheets for more details.

9. Problem 10.1.8

SOLUTION: For every initial condition x_0 , we have $\lim_{n \to \infty} x_n = 0$.

10. Problem 10.1.12

SOLUTION: (a) $f(x_n) = x_n - \frac{x_n^2 - 4}{2x_n} = \frac{x_n}{2} + \frac{2}{x_n}$. (b) Solve f(x) = x to get $\frac{x}{2} + \frac{2}{x} = x \Longrightarrow x^2 - 4 = 0 \Longrightarrow x^* = \pm 2$. (c) $f'(x) = \frac{1}{2} - \frac{2}{x^2} \Longrightarrow f'(x^*) = f'(\pm 2) = 0 \Longrightarrow$ the fixed points are superstable. (d) $x_1 = 2.50000, x_2 = 2.05000, x_3 = 2.00060, x_4 = 2.00000.$

11. Problem 10.3.4

SOLUTION:

(a) $f(x) = x \Longrightarrow x^2 - x + c = 0 \Longrightarrow x_+^* = \frac{1 + \sqrt{1 - 4c}}{2}$ and $x_-^* = \frac{1 - \sqrt{1 - 4c}}{2}$. We will have fixed points only if $c \leq \frac{1}{4}$. Now since f'(x) = 2x we have $f'(x_+^*) = 1 + \sqrt{1 - 4c} > 1 \Longrightarrow x_+^*$ is repealing for all $c < \frac{1}{4}$ $f'(x_{-}^{*}) = 1 - \sqrt{1 - 4c} \text{ so } -1 < 1 - \sqrt{1 - 4c} < 1 \Longrightarrow 0 < \sqrt{1 - 4c} < 2 \Longrightarrow -\frac{3}{4} < c < \frac{1}{4}.$ So x_{-}^{*} is attracting if $-\frac{3}{4} < c < \frac{1}{4}$ and repelling if $c < -\frac{3}{4}$.

(b) We have a saddle-node bifurcation at $c = \frac{1}{4}$ since at that point two fixed points appear. We also have another bifurcation at

 $c = \frac{-3}{4}$ since at that point x_{-}^{*} loses stability. It will turn out to be a period doubling bifurcation.

(c) We find the 2-cycles by solving $(f \circ f)(x) = x$ or $(x^2 + c)^2 + c = x$. This implies that $x^4 + 2cx^2 - x + c^2 + c = 0$. We know that x_{+}^{*} and x_{-}^{*} are roots, so to find the 2-cycles we solve

$$\frac{x^4 + 2cx^2 - x + c^2 + c}{x^2 - x + c} = x^2 + x + c + 1 = 0$$

We obtain

$$p_{\pm} = \frac{-1 \pm \sqrt{-3 - 4c}}{2}$$

Note that p_{\pm} exist as real number only if $c \leq \frac{-3}{4}$. Thus a 2-cycle appears precisely when c decreases through c = -3/4. To find where the 2-cycle is stable we have to find out where $|f'(p_{+})f'(p_{-})| < 1$. $|f'(p_{+})f'(p_{-})| < 1 = \left|(-1 + \sqrt{-3 - 4c})(-1 - \sqrt{-3 - 4c})\right| < 1 \Longrightarrow |4 + 4c| < 1 \Longrightarrow -5/4 < c < -3/4$. The 2-cycle is superstable when $|f'(p_{+})f'(p_{-})| = 0$ and this happens for c = -1. (d)

12. Find all fixed points and periodic points of period 2 for each of the given functions:

(a) F(x) = -x + 2
(b) F(x) = -2x - x².
SOLUTION:
(a) Fixed points: Solve F(x) = x to get x* = 1.
Period 2 points: Solve (F ∘ F)(x) = x to get -(-x + 2) + 2 = x and hence every point is a period 2 point.
(b) Fixed points: Solve F(x) = x to get -2x - x² = x and hence x* = 0 and x* = -3.
Period 2 points: Solve (F ∘ F)(x) = x to get

$$-2(-2x - x^{2}) - (-2x - x^{2})^{2} = x$$

$$4x - 2x^{2} - 4x^{3} - x^{4} = x$$

$$x^{4} + 4x^{3} + 2x^{2} - 3x = 0$$

$$x(x + 3)(x^{2} + x - 1) = 0$$

So the period 2 points are the solutions of $x^2 + x - 1 = 0$, which are $-\frac{1}{2}\sqrt{5} - \frac{1}{2}, \frac{1}{2}\sqrt{5} - \frac{1}{2}$.

13. Describe the fate of the orbit of each of the following seeds under iteration of the function

$$T(x) = \begin{cases} 2x, & \text{if } x < 1/2; \\ 2 - 2x, & \text{if } x \ge 1/2 \end{cases}$$

(a) 2/3 (b) 1/6 (c) 2/5 (d) 1/8 (e) 1/4 (f) 1/2.

SOLUTION:

(a) Clearly T(2/3) = 2/3 so it is a fixed point.

- (b) T(1/6) = 1/3, T(1/3) = 2/3, T(2/3) = 2/3.
- (c) Period 2 cycle: T(2/5) = 4/5, T(4/5) = 2/5.
- (d) T(1/8) = 1/4, T(1/4) = 1/2, T(1/2) = 1, T(1) = 0, T(0) = 0, ...
- (e) (f) See (d).

14. For each of the given functions, find all fixed points and determine whether they are attracting, repelling, or neutral

(a) $F(x) = (\pi/2) \sin x$ (b) F(x) = 3x(1-x). **SOLUTION:** (a) Fixed points: Solve F(x) = x to get $x^* = 0$, $x^* = \pm \frac{\pi}{2}$ Since $F'(0) = \frac{\pi}{2} > 1$, $x^* = 0$ is repelling. Also since $F'(\pm \frac{\pi}{2}) = 0$, $x^* = \pm \frac{\pi}{2}$ are attracting. (b) Fixed points: Solve F(x) = x to get $x^* = 0$ and $x^* = \frac{2}{3}$. $F'(0) = 3 > 1 \Longrightarrow x^* = 0$ is repelling. $F'(2/3) = 3 - 4 = -1 \Longrightarrow x^* = \frac{2}{3}$ is neutral.

15. What can you say about fixed points for $F_c(x) = ce^x$ with c > 0? What does the graph of F_c tell you about these fixed points?

Note that when c = 1/e, $F_c(1) = 1$.

SOLUTION: Let us study the function $f(x) = F_c(x) - x = ce^x - x$. The derivative $f'(x) = ce^x - 1 = 0$

when $x = -\ln c$ and since $f''(-\ln c) = 1 > 0$, we conclude that f has a minimum at $x = -\ln c$.

Case 1: If $f(-\ln c) > 0$, i.e., when $1 + \ln c > 0$ or c > 1/e then $F_c(x) - x = ce^x - x > 0$ and we do not have fixed points. Case 2: If $f(-\ln c) = 0$, then $F_c(x) - x = ce^x - x \ge 0$ and equality is true only at $x = -\ln c$. therefore, there is only one fixed point where the graph of $F_c(x) = ce^x$ is tangent to y = x from above. The fixed point is neutral.

Case 3: If $f(-\ln c) < 0$, then $F_c(x) - x = 0$ at two different points. Hence there are two fixed points. Since $F_c(x)$ is below y = x between the two points, one is attracting and the other repelling. The graphical analysis follows:

16. Consider the function

$$T(x) = \begin{cases} 4x, & \text{if } x < 1/2; \\ 4 - 4x, & \text{if } x \ge 1/2 \end{cases}$$

Does T have any attracting cycles? Why or why not?

SOLUTION: Suppose that T has an n-cycle, $x_0, x_1, \dots, x_n = x_0$ then

 $|(T^{n})'(x_{0})| = |T'(x_{0}) \cdot T'(x_{1}) \cdots T'(x_{n-1})| = 4^{n}$

Therefore the cycle is repelling.

17. Each function undergoes a bifurcation of fixed points at the given parameter value. In each case use analytic or qualitative methods to identify this bifurcation as a tangent, pitchfork, or period doubling bifurcation or as none of these. Discuss the behavior of orbits near the fixed points in question at, before, and after the bifurcation.

(a) $F_{\alpha}(x) = x + x^2 + \alpha$, $\alpha = 0$ (b) $F_{\alpha}(x) = \alpha \sin x$, $\alpha = 1$. SOLUTION:

(a) The fixed points are given by $x + x^2 + \alpha = x$ or $x^2 + \alpha = 0$. Therefore for $\alpha > 0$, there are no fixed points. For $\alpha = 0$, there is one fixed point; and for $\alpha < 0$, there are two fixed points at $x = \pm \sqrt{-\alpha}$. Differentiation yields $F'_{\alpha}(x) = 1 + 2x$ and $F'_{\alpha}(\pm \sqrt{-\alpha}) = 1 \pm 2\sqrt{-\alpha}$.

Differentiation yields $F'_{\alpha}(x) = 1 + 2x$ and $F'_{\alpha}(\pm\sqrt{-\alpha}) = 1 \pm 2\sqrt{-\alpha}$. Therefore for small enough α , $0 < 1 - 2\sqrt{-\alpha} < 1$ and $x = -\sqrt{-\alpha}$ is attracting. Since $1 + 2\sqrt{-\alpha} > 1$, $x = \sqrt{-\alpha}$ is repelling. For $\alpha = 0$, $F_{\alpha}(x)$ is tangent to y = x from above and therefore x = 0 is neutral. The bifurcation is a saddle-node bifurcation.

(b) For α slightly smaller than 1, the origin is the only fixed point and it is attracting. For $\alpha = 1$, $F_{\alpha}(x)$ is tangent to y = x and 0 is attracting. For $\alpha > 1$, two more fixed points appear and they are attracting for α slightly larger than 1. The origin becomes a repelling fixed point. This is a pitchfork bifurcation.