SUMMER 2007 67-717 HOMEWORK SET 2 SOLUTIONS

1. Problem 4.1.2

2 4
SOLUTION: To find the fixed points we solve f(6) =14 2cosf = 0. The solutions are §* = 37 and 6" = 3™

Using linear stability analysis we have:

2
(O] o =-2sinf] o9 =-V3<0=0"= 3T is stable. and
0*=—m 0*=—m
3 3 4
1O 4 =-2sinf] 4 =V3>0=0"= 37 is unstable.
0*=—m 0*=—m
3 3

2. Problem 4.1.5

3 7
SOLUTION: To find the fixed points we solve f() = sinf + cos = 0. The solutions are §* = Zﬂ- and 6% = Zﬂ

Using linear stability analysis we have:

(0]  3p = (cos—sinh)| 3, =-V2<0=0"= ?%T is stable.and
6*= =

0*

4 4
(O]  7p = (cosh—sinf)| 7. =v2>0=0"= %r is unstable.
0= 0=
4 4

3. Problem 4.3.1

SOLUTION: Let 2 = y/rtan6 then dz = \/rsec® 0df, also r + 22 = r(1 + tan® §) = rsec? 0, substituting we get

© dx ™2 Jrsec? 0do 1 (/2 ™
Thottleneck = = —_—— Y = —F= df = —.
o T2 _nj2  Tsec?0 VN — NG

4. Problem 4.3.2

SOLUTION: )

(a) u = tan 3 :g 0 :92 arctan u0:> db = mdu.
1 2

(b) sinf = QSin§COS§ = 2tan§ g = H—iuuz

sec? —
(¢) As u — £o00, arctanu — +m/2 and hence by part (a) § — +.
(d) With respect to u the integral becomes

™ 0o 2 o]
T:/ b =/ 2/ + ) du:/ 2
_rw—asinf oo W — 2au/(1 4+ u?) oo WUZ — 2au 4+ w

2_ 2
(e)wu2—2au+w:w(u2—2au+1):w[(u—a)2+w a]so
w w

2

w
2 [ 1 2 2
T= —/ 5 5 du = — T = T
W) o w?—a a., w Vw? — a2 Vw? —a?
2 + (’LL - 7)
w w w
a w? — a?
where we used the result of problem 4.2.1 by letting = u — — and r = 5
w w



5. Problem 4.2.3

SOLUTION: If we let 64, 6,, represent the positions of the hour hand and minute hand respectively then
dd, 2 db,, ) . . .
dt} =7 and & = TW since it takes 12 hours for the hour hand to go around and it takes 1 hour for the minute

12
hand to do so. If we let 6 = 6,,, — 0}, then

o db,, do,

dt — dt dt

= 2r(1-1/12)

2m 12

So 6 changes by 27 in time m =1

or1:05:27.

12
of an hour. So the hands will be aligned at 12:00 + 1 hrs

6. Problem 4.3.3
SOLUTION:To find the fixed points we solve f() = 0. We get

psinf —sin20 = 0

sinf(p —2cosf) =
the fixed points are §* = 0 and 7 and 0* = arccos% which exists only for || < 2. Using linear stability analysis we get

1 (0) = pcos — 2 cos 20

this implies that
f'(0) =p—2= 6" =0 is stable for u < 2 and unstable for p > 2.
f/(r) = —p — 2= 0" = 7 is stable for p > —2 and unstable for y < —2.Finally studying the fixed point §* such that

2
1
cos " = % gives us f/(6%) = u - % —2(2- % -1)=2- §u2 = 0" is unstable since |p| < 2.

We conclude that we have a subcritical pitchfork bifurcation at p=2: When g > 2, 6 =0 is unstable and
when p < 2, 6" = 0 becomes stable and two other unstable fixed points at 0* = Arc cosg and 0% = —Arccos £ are born.

We also have a subcritical pitchfork bifurcation at 4 = —2: When p < —2, 6" = 7 is unstable and when p > —2,

0* = m becomes stable and two other unstable fixed points at 6 = m — Arccos liel and 0" = w + Arccos ] are born.

The graphical analysis is given below:

f(theta) f(theta) f(theta)




25 25 25

w>2

7. Problem 10.1.3

SOLUTION: For every initial condition zg, we have lim z,, = +oc.

8. Problem 10.1.6
SOLUTION: Very complicated dynamics. Play around with the two Maple worksheets for more details.
9. Problem 10.1.8

SOLUTION: For every initial condition xy, we have lim x, = 0.

n—oo

10. Problem 10.1.12

SOLUTION: )
T, —4  xy 2
(a) f(zn) =20 — 2, 22 .
(b)Solvef(x):xtogetg+f::c:>x2—4:0:>x*::|:2.
x

1 2
(c) f(z) = T e f'(xz*) = f'(£2) = 0 = the fixed points are superstable.
(d) 1 = 2.50000, z2 = 2.05000, x5 = 2.00060, x4 = 2.00000.
11. Problem 10.3.4

SOLUTION:

(a) flx) =z =22~z +c=0= 2% =

14+ +v1—4c
2

and z*

1—+1-4c

2

1
We will have fixed points only if ¢ < 1 Now since f/(z) = 2z we have

1

f'(@%) =141 —4c>1= a7 is repelling for all ¢ < 1
1
f’(:c’i)zl—s/l—élcso—1<1—\/1—4c<1:>0<\/1—4c<2:>—%<c< 1

3 1 3
So x* is attracting if ~2 <c< 1 and repelling if ¢ < T
(b) We have a saddle-node bifurcation at ¢ = 1 since at that point two fixed points appear. We also have another bifurcation at

-3
= since at that point x* loses stability. It will turn out to be a period doubling bifurcation.

(c) We find the 2-cycles by solving (f o f)(z) = x or (2? + ¢)? + ¢ = x. This implies that 2% + 2cx?> — x4+ c? +c = 0.
We know that z% and x* are roots, so to find the 2-cycles we solve

2t 4+ 22—+ +c

5 =2’ +zx+ct+1=0
r“—x+c




‘We obtain

—-1++v—-3—-4c
b=y
-3
Note that py exist as real number only if ¢ < —. Thus a 2-cycle appears precisely when ¢ decreases through ¢ = —3/4.

To find where the 2-cycle is stable we have to find out where |f'(p4)f'(p-)| < 1.
1P () f ()] <1=](~14+vV=3—de)(—1 - v=3—4e)| < 1 => [d+4c| < 1 = —5/4 < c < —3/4.

The 2-cycle is superstabe when |f/(p+)f'(p—)| = 0 and this happens for ¢ = —1.
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12. Find all fixed points and periodic points of period 2 for each of the given functions:

(a) F(z) = —z +2 (b) F(x) = =2z — 2%

SOLUTION:

(a) Fixed points: Solve F(z) = z to get * = 1.

Period 2 points: Solve (F'o F')(z) = x to get —(—x + 2) + 2 = x and hence every point is a period 2 point.
(b) Fixed points: Solve F(z) = = to get —2z — 2% = z and hence z* = 0 and 2* = —3.

Period 2 points: Solve (F o F')(z) = x to get

—2(—2z —2*) - (2x—-2%)? = =z
4o —22% —42® — 2t = =
et 4423 +222 -3z = 0
r(z+3) (22 +z—-1) = 0
So the period 2 points are the solutions of z2 +x — 1 = 0, which are —%\/5 — %, % 5— %

13. Describe the fate of the orbit of each of the following seeds under iteration of the function

| 2z, if ©<1/2;
T(x)_{ 2 — 2, if ©>1/2



(a)2/3  (b)1/6 (c)2/5 (d)1/8 (e)1/4  (f)1/2.

SOLUTION:

(a) Clearly T'(2/3) = 2/3 so it is a fixed point.

(b) T(1/6) =1/3,T(1/3) =2/3, T(2/3) = 2/3.

(c) Period 2 cycle: T'(2/5) =4/5, T(4/5) = 2/5.

(d) T(1/8) = 1/4, T(1/4) = 1/2, T(1/2) = 1, T(1) = 0, T(0) = 0, - - -
(e) (f) See (d).

14. For each of the given functions, find all fixed points and determine whether they are attracting, repelling, or neutral

(a) F(z) = (n/2)sinz (b) F(x) = 3z(1 — z).
SOLUTION: - -
(a) Fixed points: Solve F(z) = = to get 2* =0, 2* = :I:§ Since F'(0) = 5> 1, 2* =0 is repelling.
Also since F'(:I:g) =0,2*= :I:g are attracting.

2
(b) Fixed points: Solve F(z) = x to get * = 0 and z* = 3

2

F'(0)=3>1= z* =0isrepelling. F'(2/3)=3-4=—-1=a*= 3 is neutral.

15. What can you say about fixed points for F.(z) = ce® with ¢ > 0?7 What does the graph of F. tell you about these fixed points?

Note that when ¢ = 1/e, F,.(1) = 1.
SOLUTION: Let us study the function f(z) = F.(z) — z = ce® — z. The derivative f'(z) =ce* —1=0

when = —Inc¢ and since f7(—1Ilnc) =1 > 0, we conclude that f has a minimum at x = —Ilnc.
Case 1: If f(—1Inc) >0 ,i.e, when 1 +1Inc > 0 or ¢ > 1/e then F,(x) — x = ce® — x > 0 and we do not have fixed points.
Case 2: If f(—1Inc) =0, then F.(z) — 2 = ce® — 2 > 0 and equality is true only at x = —Inc. therefore, there is only one

fixed point where the graph of F.(x) = ce® is tangent to y = x from above. The fixed point is neutral.
Case 3: If f(—Inc) <0, then F.(x) —x = 0 at two different points. Hence there are two fixed points. Since F.(z) is below y = z
between the two points, one is attracting and the other repelling. The graphical analysis follows:

257 25T 257

-1 0 1 2 3 -1 0 1 2 3 -1 0 1 2 3

c<l1/e c=1/e c>1/e

16. Consider the function /
4x, if v<1/2;
T(”“")_{ 4 — 4z, if ©>1/2

Does T have any attracting cycles? Why or why not?
SOLUTION: Suppose that T" has an n-cycle , zg, Z1,... n = 2o then
[(T™) (wo)| = [T (o) - T" (1) -+ - T'(wp—1)| = 4"

Therefore the cycle is repelling.



17. Each function undergoes a bifurcation of fixed points at the given parameter value. In each case use analytic or qualitative
methods to identify this bifurcation as a tangent, pitchfork, or period doubling bifurcation or as none of these. Discuss the
behavior of orbits near the fixed points in question at, before, and after the bifurcation.

(a) Fp(z) =242 +a, a=0 (b) Fo(z) = asinz, a=1.

SOLUTION:

(a) The fixed points are given by x + 22 + @ = z or 22 + o = 0. Therefore for a > 0, there are no fixed points.
For o = 0, there is one fixed point; and for a < 0, there are two fixed points at x = ++v/—a.

Differentiation yields F),(z) = 1+ 2z and F/(£v/—a) =1+ 2{/—a.

Therefore for small enough «, 0 < 1 — 2v/—a < 1 and z = —/—a is attracting. Since 1 +2/—a > 1, 2 =+v/—«
is repelling. For a = 0, F,,(z) is tangent to y = « from above and therefore x = 0 is neutral. The bifurcation is a
saddle-node bifurcation.

(b) For « slightly smaller than 1, the origin is the only fixed point and it is attracting. For a = 1, F,(z) is tangent to y = x
and 0 is attracting. For o > 1, two more fixed points appear and they are attracting for « slightly larger than 1.
The origin becomes a repelling fixed point. This is a pitchfork bifurcation.



