SPRING 2005 67-717 HOMEWORK SET 1 SOLUTIONS

1. Problem 2.1.4 part(a) only.

Solution: When we substitute $x_0 = \pi/4$, we obtain $t = \ln \left| \frac{1 + \sqrt{2}}{\csc x + \cot x} \right|$, this implies that

$$e^{t} = \left| \frac{1 + \sqrt{2}}{\csc x + \cot x} \right|$$
$$\frac{e^{t}}{1 + \sqrt{2}} = \left| \frac{\sin x}{1 + \cos x} \right|$$
$$\frac{e^{t}}{1 + \sqrt{2}} = \left| \tan \frac{x}{2} \right|$$

Now we know from geometric consideration, i.e., examining the flow line that if $x_0 = \pi/4$, then $\pi/4 \le x < \pi$, therefore

$$\frac{e^t}{1+\sqrt{2}} = \tan\frac{x}{2} \text{ or } x(t) = 2\tan^{-1}\left(\frac{e^t}{1+\sqrt{2}}\right)$$

Clearly $\lim_{t \to \infty} x(t) = 2 \cdot \lim_{t \to \infty} \tan^{-1}\left(\frac{e^t}{1+\sqrt{2}}\right) = 2 \cdot \frac{\pi}{2} = \pi.$

2. Problem 2.2.2.

Solution: The graph is

The fixed points are at x = -1 and x = 1. The equilibrium point x = 1 is stable while x = -1 is unstable.

3. Problem 2.2.7.

Solution: The graph is $y = e^x - \cos x$

Clearly there are infinitely many fixed points and they alternate between unstable and stable starting from x = 0 and going in the negative direction. Note that as $x \to -\infty$, the fixed points tend to the zeros of the cosine function.

4. Problem 2.2.11.

Solution: If we let $u = \frac{V_0}{R} - \frac{Q}{RC}$ then $\frac{du}{dt} = -\frac{1}{RC}\frac{dQ}{dt}$ and $u(0) = \frac{V_0}{R} - \frac{Q(0)}{RC} = \frac{V_0}{R}$, the initial value problem becomes $-RC\frac{du}{dt} = u$ $u(0) = \frac{V_0}{R}$ Or $\frac{du}{dt} = -\frac{1}{RC}u$ $u(0) = \frac{V_0}{R}$ The solution is $u(t) = \frac{V_0}{R}e^{-\frac{t}{RC}}$ Therefore $\frac{V_0}{R} - \frac{Q(t)}{RC} = \frac{V_0}{R}e^{-\frac{t}{RC}}$ Solving for Q we get $Q(t) = CV_0(1 - e^{-\frac{t}{RC}})$ 5. Problem 2.3.2

Solution: (a) The fixed points are given by the solutions of $k_1ax - k_{-1}x^2 = 0$ so $x^* = 0$ and $x^* = \frac{k_1a}{k_{-1}}$. Since the graph of \dot{x} vs x is a parabola that opens downward, we see that $x^* = 0$ is unstable and $x^* = \frac{k_1a}{k_{-1}}$ is stable. (b) $\dot{x} = 2x - x^2$

6. Problem 2.4.2.

Solution: f(x) = x(1-x)(2-x) = 0 \implies The fixed points are $x^* = 0$, $x^* = 1$, and $x^* = 2$. Since $f'(x) = 3x^2 - 6x + 2$ we have $f'(0) = 2 > 0 \implies x^* = 0$ is unstable, $f'(1) = -1 < 0 \implies x^* = 1$ is stable and $f'(2) = 2 > 0 \implies x^* = 2$ is unstable.

7. Problem 2.4.7.

Solution: Case 1: a > 0 then $f(x) = ax - x^3 = 0 \implies x(\sqrt{a} + x)(\sqrt{a} - x) = 0 \implies x^* = 0, \pm \sqrt{a}$ are the fixed points. Since $f'(x) = a - 3x^2$ then $f'(0) = a > 0 \implies x^* = 0$ is unstable, $f'(\pm\sqrt{a}) = -2a < 0 \implies x^* = \sqrt{a}$ and $x^* = -\sqrt{a}$ are stable. Case 2: a = 0 then $f(x) = -x^3 \implies x^* = 0$ is the only fixed point and graphically it is clearly stable.

Case 3: a < 0 then f(x) = -x x = 0 is the only fixed point and graphically it is clearly stable. Case 3: a < 0 then $f(x) = -x(x^2 - a) = 0 \implies x^* = 0$ and since f'(0) = a < 0 it is stable.

8. Problem 2.4.9.

Solution: (a) Separating the variables and integrating we get

$$\begin{array}{rcl} - \int\limits_{x_0}^x \frac{du}{u^3} &=& \int\limits_0^t dv \\ \frac{1}{2u^2} \bigg|_{x_0}^x &=& t \\ \frac{1}{x^2} - \frac{1}{x_0^2} &=& 2t \\ & \frac{1}{x^2} &=& 2t + \frac{1}{x_0^2} \\ & x^2 &=& \frac{x_0^2}{2x_0^2 t + 1} \\ & x(t) &=& \pm \frac{|x_0|}{\sqrt{2x_0^2 t + 1}} = \frac{x_0}{\sqrt{2x_0^2 t + 1}} \end{array}$$

Clearly $\lim_{t\to\infty} x(t) = 0$ but it is not exponential decay.

(b)
$$x(t) = \frac{10}{\sqrt{200t+1}}$$
 and $x(t) = 10e^{-t}$.

Critical slowing down vs Exponential decay

9. Problem 3.1.1

SOLUTION: We know we have a saddle-node bifurcation. Let us solve for the fixed point and parameter value at the bifurcation point. We solve f(x,r) = 0 and $\frac{\partial f}{\partial x}(x,r) = 0$ for x^* and r_c .

$$\begin{cases} 1+rx+x^2=0\\r+2x=0 \end{cases} \implies \begin{cases} 1-x^2=0\\r=-2x \end{cases} \implies \begin{cases} x^*=\pm 1\\r_c=\pm 2 \end{cases}$$

The graphical analysis is given by:

We can get the bifurcation diagram (in this case exactly by solving for x^* in terms of r.) When r < -2 we have $x^* = \frac{-r \pm \sqrt{r^2 - 4}}{2}$

10. Problem 3.1.3

SOLUTION: Proceeding as in the previous problem, we get that

$$\begin{cases} r+x-\ln(x+1)=0\\ 1-\frac{1}{x+1}=0 \end{cases} \implies \begin{cases} r=\ln(1+x)-x\\ 1+x=1 \end{cases} \implies \begin{cases} r_c=0\\ x^*=0 \end{cases}$$

The graphical analysis is given by

The bifurcation diagram is given by

Left branch: Stable, Right branch: Unstable.

11. Problem 3.2.1.

This is clearly a transcritical bifurcation since $x^* = 0$ is always a fixed point and it exchanges stability with the other fixed point $x^* = -r$ as we cross the bifurcation point $r_c = 0$. The bifurcation diagram is given by

12. Problem 3.2.4.

SOLUTION: By expanding we get $\dot{x} = x(r-1-x-O(x^2)) = (r-1)x - x^2 + O(x^2)$. By what we know of normal forms we suspect a transcritical birfuraction at $r_c = 1$. Let us give a graphical analysis:

Again we can see that this is clearly a transcritical bifurcation since $x^* = 0$ is always a fixed point and it exchanges stability with the other fixed point $e^{x^*} = r$ or $x^* = \ln r$ as we cross the bifurcation point $r_c = 1$. The bifurcation diagram is given by

13. Problem 3.3.1 Parts (a), (b) and (c) only.

SOLUTION:(a) If we set N = 0 we get from the second equation that $N = \frac{p}{Gn+f}$. Substituting this value in equation 1 we get

$$\frac{dn}{dt} = \left(\frac{Gp}{f+Gn} - k\right)n = k\left(\frac{p}{k} - \frac{f}{G} - n\right)\frac{Gn}{f+Gn} = F(n)$$

(b) Since $n^* = 0$ is a fixed point, let us study its stability using linear stability analysis.by examining the sign of $\frac{dF}{dn}(0)$. First we compute $\frac{dF}{dn}$:

$$\frac{dF}{dn} = -k\frac{Gn}{f+Gn} + k\left(\frac{p}{k} - \frac{f}{G} - n\right)\frac{G(f+Gn) - Gn(G)}{(f+Gn)^2}$$

Hence:

$$\frac{dF}{dn}(0) = k\left(\frac{p}{k} - \frac{f}{G}\right)\frac{G}{f}$$

Since G > 0, k > 0 and f > 0, we conclude that

$$\frac{dF}{dn}(0) < 0 \text{ for } p < p_c = \frac{kf}{G} \text{ and } \frac{dF}{dn}(0) > 0 \text{ for } p > p_c = \frac{kf}{G}$$

This implies that $n^* = 0$ is stable for $p < p_c$ and unstable for $p > p_c$.

(c) Clearly a bifurcation occurs at $p = p_c$. At the bifurcation point, the two fixed points $n_1^* = 0$ and $n_2^* = \frac{p}{k} - \frac{f}{G}$ switch stability and thus we have a transcritical bifurcation.

14. Problem 3.4.1

SOLUTION: By an easy change of variable we could bring the given problem into the subcritical pitchfork bifurcation normal form. The following graphical analysis confirms this fact.

When r < 0, we have three fixed points given by $x^* = 0$ (stable), $x^* = \pm \frac{\sqrt{-r}}{2}$ (both unstable). When $r \ge 0$, we have only one fixed point $x^* = 0$ that is unstable. The bifurcation diagram is

15. Problem 3.4.4.

SOLUTION: We can get an idea of what kind of pitchfork bifurcation we have in this case by expanding the right hand side:

$$\dot{x} = x + \frac{rx}{1+x^2} = x + rx(1-x^2 + O(x^4)) = (r+1)x - rx^3 + O(x^5)$$

We expect a pitchfork bifurcation at $r_c = -1$ and it is subcritical since the cube is destabilizing (remember r is close to -1). The following graphical analysis confirms that

When r < -1 we have three fixed points: $x^* = 0$ (stable), $x^* = \pm \sqrt{-(1+r)}$ (both unstable). When $r \ge -1$ we have one fixed point $x^* = 0$ (unstable). The bifurcation diagram is

