
SPRING 2005 67-717 HOMEWORKSET 1 SOLUTIONS

1. Problem 2.1.4 part(a) only.

Solution: When we substitute x0 = �=4, we obtain t = ln

����� 1 +
p
2

cscx+ cotx

�����, this implies that
et =

����� 1 +
p
2

cscx+ cotx

�����
et

1 +
p
2

=

���� sinx

1 + cosx

����
et

1 +
p
2

=
���tan x

2

���
Now we know from geometric consideration,i.e., examining the �ow line that if x0 = �=4, then �=4 � x < �;
therefore

et

1 +
p
2
= tan

x

2
or x(t) = 2 tan�1

�
et

1 +
p
2

�
Clearly lim

t!1
x(t) = 2 � lim

t!1
tan�1

�
et

1 +
p
2

�
= 2 � �

2
= �:

2. Problem 2.2.2.

Solution: The graph is
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The �xed points are at x = �1 and x = 1: The equilibrium point x = 1 is stable while x = �1 is
unstable.

3. Problem 2.2.7.

Solution: The graph is y = ex � cosx
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Clearly there are in�nitely many �xed points and they alternate between unstable and stable starting
from x = 0 and going in the negative direction. Note that as x! �1, the �xed points tend to the zeros
of the cosine function.

4. Problem 2.2.11.

Solution: If we let u =
V0
R
� Q

RC
then

du

dt
= � 1

RC

dQ

dt
and u(0) =

V0
R
� Q(0)
RC

=
V0
R
; the initial value

problem becomes

�RC du
dt
= u u(0) =

V0
R

Or
du

dt
= � 1

RC
u u(0) =

V0
R

The solution is

u(t) =
V0
R
e
�
t

RC

Therefore

V0
R
� Q(t)
RC

=
V0
R
e
�
t

RC

Solving for Q we get

Q(t) = CV0(1� e
�
t

RC )

5. Problem 2.3.2

Solution: (a) The �xed points are given by the solutions of k1ax�k�1x2 = 0 so x� = 0 and x� =
k1a

k�1
:

Since the graph of
�
x vs x is a parabola that opens downward, we see that x� = 0 is unstable and

x� =
k1a

k�1
is stable.

(b)
�
x = 2x� x2
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6. Problem 2.4.2.

Solution: f(x) = x(1� x)(2� x) = 0 =)The �xed points are x� = 0; x� = 1; and x� = 2:
Since f 0(x) = 3x2 � 6x+ 2 we have f 0(0) = 2 > 0 =) x� = 0 is unstable, f 0(1) = �1 < 0 =) x� = 1
is stable and f 0(2) = 2 > 0 =) x� = 2 is unstable.

7. Problem 2.4.7.

Solution: Case 1: a > 0 then f(x) = ax� x3 = 0 =) x(
p
a+ x)(

p
a� x) = 0 =) x� = 0;�

p
a

are the �xed points. Since f 0(x) = a� 3x2 then f 0(0) = a > 0 =) x� = 0 is unstable,
f 0(�

p
a) = �2a < 0 =) x� =

p
a and x� = �

p
a are stable.

Case 2: a = 0 then f(x) = �x3 =) x� = 0 is the only �xed point and graphically it is clearly stable.
Case 3: a < 0 then f(x) = �x(x2 � a) = 0 =) x� = 0 and since f 0(0) = a < 0 it is stable.
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8. Problem 2.4.9.
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Solution: (a) Separating the variables and integrating we get

�
xR
x0

du

u3
=

tR
0

dv

1

2u2

����x
x0

= t

1

x2
� 1

x20
= 2t

1

x2
= 2t+

1

x20

x2 =
x20

2x20t+ 1

x(t) = � jx0jp
2x20t+ 1

=
x0p

2x20t+ 1

Clearly lim
t!1

x(t) = 0 but it is not exponential decay.

(b) x(t) =
10p

200t+ 1
and x(t) = 10e�t:
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Critical slowing down vs Exponential decay

9. Problem 3.1.1

SOLUTION: We know we have a saddle-node bifurcation. Let us solve for the �xed point

and parameter value at the bifurcation point. We solve f(x; r) = 0 and
@f

@x
(x; r) = 0

for x� and rc: �
1 + rx+ x2 = 0
r + 2x = 0

=)
�
1� x2 = 0
r = �2x =)

�
x� = �1
rc = �2

The graphical analysis is given by:

4



420­2

1 5

1 2 .5

1 0

7 .5

5

2 .5

0

x

y

x

y

r < �2

420­ 2

1 5

1 2 .5

1 0

7 .5

5

2 .5

0

x

y

x

y

r = �2

2 .51 .2 50­1 .2 5­2 .5

4

3

2

1

0

x

y

x

y

r > �2

20­2­4

5

3 .7 5

2 .5

1 .2 5

0

x

y

x

y

r < 2

1 .2 50­1 .2 5­2 .5

5

3 .7 5

2 .5

1 .2 5

0

x

y

x

y

r = 2

1 .2 50­1 .2 5­2 .5­3 .7 5­5

1 0

7 .5

5

2 .5

0

x

y

x

y

r > 2

We can get the bifurcation diagram (in this case exactly by solving for x� in terms of r:) When r < �2

we have x� =
�r �

p
r2 � 4
2
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10. Problem 3.1.3

SOLUTION: Proceeding as in the previous problem, we get that(
r + x� ln(x+ 1) = 0

1� 1

x+ 1
= 0

=)
�
r = ln(1 + x)� x

1 + x = 1
=)

�
rc = 0
x� = 0
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The graphical analysis is given by
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r > 0 : No �xed points
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r = 0 : One half-stable �xed point.
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r < 0 : Two �xed points.

The bifurcation diagram is given by
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11. Problem 3.2.1.

SOLUTION: This is an example of a transcritical bifurcation. Using a graphical analysis we get
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This is clearly a transcritical bifurcation since x� = 0 is always a �xed point and it exchanges stability
with the other �xed point x� = �r as we cross the bifurcation point rc = 0: The bifurcation diagram
is given by

12. Problem 3.2.4.

SOLUTION: By expanding we get
�
x = x(r � 1� x�O(x2)) = (r � 1)x� x2 +O(x2):

By what we know of normal forms we suspect a transcritical birfuraction at rc = 1:
Let us give a graphical analysis:
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Again we can see that this is clearly a transcritical bifurcation since x� = 0 is always a �xed point
and it exchanges stability with the other �xed point ex

�
= r or x� = ln r as we cross the bifurcation

point rc = 1: The bifurcation diagram is given by
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13. Problem 3.3.1 Parts (a), (b) and (c) only..

SOLUTION:(a) If we set
�
N = 0 we get from the second equation that N =

p

Gn+ f
.

Substituting this value in equation 1 we get

dn

dt
=

�
Gp

f +Gn
� k

�
n = k

�
p

k
� f

G
� n

�
Gn

f +Gn
= F (n)

(b) Since n� = 0 is a �xed point; let us study its stability using linear stability analysis.by examining

the sign of
dF

dn
(0): First we compute

dF

dn
:

dF

dn
= �k Gn

f +Gn
+ k

�
p

k
� f

G
� n

�
G(f +Gn)�Gn(G)

(f +Gn)2

Hence:
dF

dn
(0) = k

�
p

k
� f

G

�
G

f

Since G > 0; k > 0 and f > 0, we conclude that

dF

dn
(0) < 0 for p < pc =

kf

G
and

dF

dn
(0) > 0 for p > pc =

kf

G

This implies that n� = 0 is stable for p < pc and unstable for p > pc:
(c) Clearly a bifurcation occurs at p = pc: At the bifurcation point, the two �xed points

n�1 = 0 and n
�
2 =

p

k
� f

G
switch stability and thus we have a transcritical bifurcation.

14. Problem 3.4.1
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SOLUTION: By an easy change of variable we could bring the given problem into the subcritical
pitchfork bifurcation normal form. The following graphical analysis con�rms this fact.

2 .51 .2 50­1 .2 5­2 .5

7 .5

5

2 .5

0

­2 .5

­5

­7 .5

x

y

x

y

r < 0

2 .51 .2 50­1 .2 5­2 .5

1 0

5

0

­5

­1 0

x

y

x

y

r = 0

2 .51 .2 50­1 .2 5­2 .5

1 5

1 0

5

0

­5

­1 0

­1 5

x

y

x

y

r > 0

When r < 0, we have three �xed points given by x� = 0 (stable), x� = �
p
�r
2

(both unstable).

When r � 0; we have only one �xed point x� = 0 that is unstable. The bifurcation diagram is

15. Problem 3.4.4.

SOLUTION: We can get an idea of what kind of pitchfork bifurcation we have in this case by expanding
the right hand side:

�
x = x+

rx

1 + x2
= x+ rx(1� x2 +O(x4)) = (r + 1)x� rx3 +O(x5)

We expect a pitchfork bifurcation at rc = �1 and it is subcritical since the cube is destabilizing
(remember r is close to -1). The following graphical analysis con�rms that

9



2 .51 .2 50­1 .2 5­2 .5

2

1

0

­1

­2

x

y

x

y

r < �1

2 .51 .2 50­ 1 .2 5­ 2 .5

2

1

0

­ 1

­ 2

x

y

x

y

r = �1

2 .51 .2 50­1 .2 5­2 .5

2 .5

1 .2 5

0

­1 .2 5

­2 .5

x

y

x

y

r > �1

When r < �1 we have three �xed points: x� = 0 (stable), x� = �
p
�(1 + r) (both unstable).

When r � �1 we have one �xed point x� = 0 (unstable).
The bifurcation diagram is
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