SPRING 2005 67-717 HOMEWORK SET 1 SOLUTIONS

1. Problem 2.1.4 part(a) only.

Solution: When we substitute $x_{0}=\pi / 4$, we obtain $t=\ln \left|\frac{1+\sqrt{2}}{\csc x+\cot x}\right|$, this implies that

$$
\begin{aligned}
e^{t} & =\left|\frac{1+\sqrt{2}}{\csc x+\cot x}\right| \\
\frac{e^{t}}{1+\sqrt{2}} & =\left|\frac{\sin x}{1+\cos x}\right| \\
\frac{e^{t}}{1+\sqrt{2}} & =\left|\tan \frac{x}{2}\right|
\end{aligned}
$$

Now we know from geometric consideration,i.e., examining the flow line that if $x_{0}=\pi / 4$, then $\pi / 4 \leq x<\pi$, therefore

$$
\frac{e^{t}}{1+\sqrt{2}}=\tan \frac{x}{2} \text { or } x(t)=2 \tan ^{-1}\left(\frac{e^{t}}{1+\sqrt{2}}\right)
$$

Clearly $\lim _{t \rightarrow \infty} x(t)=2 \cdot \lim _{t \rightarrow \infty} \tan ^{-1}\left(\frac{e^{t}}{1+\sqrt{2}}\right)=2 \cdot \frac{\pi}{2}=\pi$.
2. Problem 2.2.2.

Solution: The graph is

The fixed points are at $x=-1$ and $x=1$. The equilibrium point $x=1$ is stable while $x=-1$ is unstable.
3. Problem 2.2.7.

Solution: The graph is $y=e^{x}-\cos x$

Clearly there are infinitely many fixed points and they alternate between unstable and stable starting from $x=0$ and going in the negative direction. Note that as $x \rightarrow-\infty$, the fixed points tend to the zeros of the cosine function.
4. Problem 2.2.11.

Solution: If we let $u=\frac{V_{0}}{R}-\frac{Q}{R C}$ then $\frac{d u}{d t}=-\frac{1}{R C} \frac{d Q}{d t}$ and $u(0)=\frac{V_{0}}{R}-\frac{Q(0)}{R C}=\frac{V_{0}}{R}$, the initial value problem becomes

$$
-R C \frac{d u}{d t}=u \quad u(0)=\frac{V_{0}}{R}
$$

Or

$$
\frac{d u}{d t}=-\frac{1}{R C} u \quad u(0)=\frac{V_{0}}{R}
$$

The solution is

$$
u(t)=\frac{V_{0}}{R} e^{-\frac{t}{R C}}
$$

Therefore

$$
\frac{V_{0}}{R}-\frac{Q(t)}{R C}=\frac{V_{0}}{R} e^{-\frac{t}{R C}}
$$

Solving for Q we get

$$
Q(t)=C V_{0}\left(1-e^{-\frac{t}{R C}}\right)
$$

5. Problem 2.3.2

Solution: (a) The fixed points are given by the solutions of $k_{1} a x-k_{-1} x^{2}=0$ so $x^{*}=0$ and $x^{*}=\frac{k_{1} a}{k_{-1}}$.
Since the graph of \dot{x} vs x is a parabola that opens downward, we see that $x^{*}=0$ is unstable and $x^{*}=\frac{k_{1} a}{k_{-1}}$ is stable.
(b) $\dot{x}=2 x-x^{2}$

6. Problem 2.4.2.

Solution: $f(x)=x(1-x)(2-x)=0 \Longrightarrow$ The fixed points are $x^{*}=0, x^{*}=1$, and $x^{*}=2$. Since $f^{\prime}(x)=3 x^{2}-6 x+2$ we have $f^{\prime}(0)=2>0 \Longrightarrow x^{*}=0$ is unstable, $f^{\prime}(1)=-1<0 \Longrightarrow x^{*}=1$ is stable and $f^{\prime}(2)=2>0 \Longrightarrow x^{*}=2$ is unstable.
7. Problem 2.4.7.

Solution: Case 1: $a>0$ then $f(x)=a x-x^{3}=0 \Longrightarrow x(\sqrt{a}+x)(\sqrt{a}-x)=0 \Longrightarrow x^{*}=0, \pm \sqrt{a}$ are the fixed points. Since $f^{\prime}(x)=a-3 x^{2}$ then $f^{\prime}(0)=a>0 \Longrightarrow x^{*}=0$ is unstable, $f^{\prime}(\pm \sqrt{a})=-2 a<0 \Longrightarrow x^{*}=\sqrt{a}$ and $x^{*}=-\sqrt{a}$ are stable.
Case 2: $a=0$ then $f(x)=-x^{3} \Longrightarrow x^{*}=0$ is the only fixed point and graphically it is clearly stable. Case 3: $a<0$ then $f(x)=-x\left(x^{2}-a\right)=0 \Longrightarrow x^{*}=0$ and since $f^{\prime}(0)=a<0$ it is stable.

8. Problem 2.4.9.

Solution: (a) Separating the variables and integrating we get

$$
\begin{aligned}
-\int_{x_{0}}^{x} \frac{d u}{u^{3}} & =\int_{0}^{t} d v \\
\left.\frac{1}{2 u^{2}}\right|_{x_{0}} ^{x} & =t \\
\frac{1}{x^{2}}-\frac{1}{x_{0}^{2}} & =2 t \\
\frac{1}{x^{2}} & =2 t+\frac{1}{x_{0}^{2}} \\
x^{2} & =\frac{x_{0}^{2}}{2 x_{0}^{2} t+1} \\
x(t) & = \pm \frac{\left|x_{0}\right|}{\sqrt{2 x_{0}^{2} t+1}}=\frac{x_{0}}{\sqrt{2 x_{0}^{2} t+1}}
\end{aligned}
$$

Clearly $\lim _{t \rightarrow \infty} x(t)=0$ but it is not exponential decay.
(b) $x(t)=\frac{10}{\sqrt{200 t+1}}$ and $x(t)=10 e^{-t}$.

Critical slowing down vs Exponential decay

9. Problem 3.1.1

SOLUTION: We know we have a saddle-node bifurcation. Let us solve for the fixed point and parameter value at the bifurcation point. We solve $f(x, r)=0$ and $\frac{\partial f}{\partial x}(x, r)=0$ for x^{*} and r_{c}.

$$
\left\{\begin{array} { c }
{ 1 + r x + x ^ { 2 } = 0 } \\
{ r + 2 x = 0 }
\end{array} \Longrightarrow \left\{\begin{array} { c }
{ 1 - x ^ { 2 } = 0 } \\
{ r = - 2 x }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x^{*}= \pm 1 \\
r_{c}= \pm 2
\end{array}\right.\right.\right.
$$

The graphical analysis is given by:

We can get the bifurcation diagram (in this case exactly by solving for x^{*} in terms of r.) When $r<-2$ we have $x^{*}=\frac{-r \pm \sqrt{r^{2}-4}}{2}$

10. Problem 3.1.3

SOLUTION: Proceeding as in the previous problem, we get that

$$
\left\{\begin{array} { c }
{ r + x - \operatorname { l n } (x + 1) = 0 } \\
{ 1 - \frac { 1 } { x + 1 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array} { c }
{ r = \operatorname { l n } (1 + x) - x } \\
{ 1 + x = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
r_{c}=0 \\
x^{*}=0
\end{array}\right.\right.\right.
$$

The graphical analysis is given by

The bifurcation diagram is given by

Left branch: Stable, Right branch: Unstable.

11. Problem 3.2.1.

SOLUTION: This is an example of a transcritical bifurcation. Using a graphical analysis we get

This is clearly a transcritical bifurcation since $x^{*}=0$ is always a fixed point and it exchanges stability with the other fixed point $x^{*}=-r$ as we cross the bifurcation point $r_{c}=0$. The bifurcation diagram is given by

12. Problem 3.2.4.

SOLUTION: By expanding we get $\dot{x}=x\left(r-1-x-O\left(x^{2}\right)\right)=(r-1) x-x^{2}+O\left(x^{2}\right)$.
By what we know of normal forms we suspect a transcritical birfuraction at $r_{c}=1$.
Let us give a graphical analysis:

Again we can see that this is clearly a transcritical bifurcation since $x^{*}=0$ is always a fixed point and it exchanges stability with the other fixed point $e^{x^{*}}=r$ or $x^{*}=\ln r$ as we cross the bifurcation point $r_{c}=1$. The bifurcation diagram is given by

13. Problem 3.3.1 Parts (a), (b) and (c) only..

SOLUTION:(a) If we set $\dot{N}=0$ we get from the second equation that $N=\frac{p}{G n+f}$.
Substituting this value in equation 1 we get

$$
\frac{d n}{d t}=\left(\frac{G p}{f+G n}-k\right) n=k\left(\frac{p}{k}-\frac{f}{G}-n\right) \frac{G n}{f+G n}=F(n)
$$

(b) Since $n^{*}=0$ is a fixed point, let us study its stability using linear stability analysis.by examining the sign of $\frac{d F}{d n}(0)$. First we compute $\frac{d F}{d n}$:

$$
\frac{d F}{d n}=-k \frac{G n}{f+G n}+k\left(\frac{p}{k}-\frac{f}{G}-n\right) \frac{G(f+G n)-G n(G)}{(f+G n)^{2}}
$$

Hence:

$$
\frac{d F}{d n}(0)=k\left(\frac{p}{k}-\frac{f}{G}\right) \frac{G}{f}
$$

Since $G>0, k>0$ and $f>0$, we conclude that

$$
\frac{d F}{d n}(0)<0 \text { for } p<p_{c}=\frac{k f}{G} \text { and } \frac{d F}{d n}(0)>0 \text { for } p>p_{c}=\frac{k f}{G}
$$

This implies that $n^{*}=0$ is stable for $p<p_{c}$ and unstable for $p>p_{c}$.
(c) Clearly a bifurcation occurs at $p=p_{c}$. At the bifurcation point, the two fixed points $n_{1}^{*}=0$ and $n_{2}^{*}=\frac{p}{k}-\frac{f}{G}$ switch stability and thus we have a transcritical bifurcation.
14. Problem 3.4.1

SOLUTION: By an easy change of variable we could bring the given problem into the subcritical pitchfork bifurcation normal form. The following graphical analysis confirms this fact.

When $r<0$, we have three fixed points given by $x^{*}=0$ (stable), $x^{*}= \pm \frac{\sqrt{-r}}{2}$ (both unstable). When $r \geq 0$, we have only one fixed point $x^{*}=0$ that is unstable. The bifurcation diagram is

15. Problem 3.4.4.

SOLUTION: We can get an idea of what kind of pitchfork bifurcation we have in this case by expanding the right hand side:

$$
\dot{x}=x+\frac{r x}{1+x^{2}}=x+r x\left(1-x^{2}+O\left(x^{4}\right)\right)=(r+1) x-r x^{3}+O\left(x^{5}\right)
$$

We expect a pitchfork bifurcation at $r_{c}=-1$ and it is subcritical since the cube is destabilizing (remember r is close to -1). The following graphical analysis confirms that

When $r<-1$ we have three fixed points: $x^{*}=0$ (stable), $x^{*}= \pm \sqrt{-(1+r)}$ (both unstable). When $r \geq-1$ we have one fixed point $x^{*}=0$ (unstable).
The bifurcation diagram is

